Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

12x^{2}-12x^{4}=25-484x^{4}-220x^{2}
Calculate 22 to the power of 2 and get 484.
12x^{2}-12x^{4}-25=-484x^{4}-220x^{2}
Subtract 25 from both sides.
12x^{2}-12x^{4}-25+484x^{4}=-220x^{2}
Add 484x^{4} to both sides.
12x^{2}+472x^{4}-25=-220x^{2}
Combine -12x^{4} and 484x^{4} to get 472x^{4}.
12x^{2}+472x^{4}-25+220x^{2}=0
Add 220x^{2} to both sides.
232x^{2}+472x^{4}-25=0
Combine 12x^{2} and 220x^{2} to get 232x^{2}.
472t^{2}+232t-25=0
Substitute t for x^{2}.
t=\frac{-232±\sqrt{232^{2}-4\times 472\left(-25\right)}}{2\times 472}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 472 for a, 232 for b, and -25 for c in the quadratic formula.
t=\frac{-232±4\sqrt{6314}}{944}
Do the calculations.
t=\frac{\sqrt{6314}}{236}-\frac{29}{118} t=-\frac{\sqrt{6314}}{236}-\frac{29}{118}
Solve the equation t=\frac{-232±4\sqrt{6314}}{944} when ± is plus and when ± is minus.
x=-\sqrt{\frac{\sqrt{6314}}{236}-\frac{29}{118}} x=\sqrt{\frac{\sqrt{6314}}{236}-\frac{29}{118}} x=-i\sqrt{\frac{\sqrt{6314}}{236}+\frac{29}{118}} x=i\sqrt{\frac{\sqrt{6314}}{236}+\frac{29}{118}}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
12x^{2}-12x^{4}=25-484x^{4}-220x^{2}
Calculate 22 to the power of 2 and get 484.
12x^{2}-12x^{4}-25=-484x^{4}-220x^{2}
Subtract 25 from both sides.
12x^{2}-12x^{4}-25+484x^{4}=-220x^{2}
Add 484x^{4} to both sides.
12x^{2}+472x^{4}-25=-220x^{2}
Combine -12x^{4} and 484x^{4} to get 472x^{4}.
12x^{2}+472x^{4}-25+220x^{2}=0
Add 220x^{2} to both sides.
232x^{2}+472x^{4}-25=0
Combine 12x^{2} and 220x^{2} to get 232x^{2}.
472t^{2}+232t-25=0
Substitute t for x^{2}.
t=\frac{-232±\sqrt{232^{2}-4\times 472\left(-25\right)}}{2\times 472}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 472 for a, 232 for b, and -25 for c in the quadratic formula.
t=\frac{-232±4\sqrt{6314}}{944}
Do the calculations.
t=\frac{\sqrt{6314}}{236}-\frac{29}{118} t=-\frac{\sqrt{6314}}{236}-\frac{29}{118}
Solve the equation t=\frac{-232±4\sqrt{6314}}{944} when ± is plus and when ± is minus.
x=\frac{\sqrt{\frac{\sqrt{6314}-58}{59}}}{2} x=-\frac{\sqrt{\frac{\sqrt{6314}-58}{59}}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.