Solve for x (complex solution)
x=\frac{i\sqrt{59\left(\sqrt{6314}+58\right)}}{118}\approx 0.76319101i
x=-\frac{i\sqrt{59\left(\sqrt{6314}+58\right)}}{118}\approx -0-0.76319101i
x=-\frac{\sqrt{59\left(\sqrt{6314}-58\right)}}{118}\approx -0.301554462
x=\frac{\sqrt{59\left(\sqrt{6314}-58\right)}}{118}\approx 0.301554462
Solve for x
x=-\frac{\sqrt{59\left(\sqrt{6314}-58\right)}}{118}\approx -0.301554462
x=\frac{\sqrt{59\left(\sqrt{6314}-58\right)}}{118}\approx 0.301554462
Graph
Share
Copied to clipboard
12x^{2}-12x^{4}=25-484x^{4}-220x^{2}
Calculate 22 to the power of 2 and get 484.
12x^{2}-12x^{4}-25=-484x^{4}-220x^{2}
Subtract 25 from both sides.
12x^{2}-12x^{4}-25+484x^{4}=-220x^{2}
Add 484x^{4} to both sides.
12x^{2}+472x^{4}-25=-220x^{2}
Combine -12x^{4} and 484x^{4} to get 472x^{4}.
12x^{2}+472x^{4}-25+220x^{2}=0
Add 220x^{2} to both sides.
232x^{2}+472x^{4}-25=0
Combine 12x^{2} and 220x^{2} to get 232x^{2}.
472t^{2}+232t-25=0
Substitute t for x^{2}.
t=\frac{-232±\sqrt{232^{2}-4\times 472\left(-25\right)}}{2\times 472}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 472 for a, 232 for b, and -25 for c in the quadratic formula.
t=\frac{-232±4\sqrt{6314}}{944}
Do the calculations.
t=\frac{\sqrt{6314}}{236}-\frac{29}{118} t=-\frac{\sqrt{6314}}{236}-\frac{29}{118}
Solve the equation t=\frac{-232±4\sqrt{6314}}{944} when ± is plus and when ± is minus.
x=-\sqrt{\frac{\sqrt{6314}}{236}-\frac{29}{118}} x=\sqrt{\frac{\sqrt{6314}}{236}-\frac{29}{118}} x=-i\sqrt{\frac{\sqrt{6314}}{236}+\frac{29}{118}} x=i\sqrt{\frac{\sqrt{6314}}{236}+\frac{29}{118}}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
12x^{2}-12x^{4}=25-484x^{4}-220x^{2}
Calculate 22 to the power of 2 and get 484.
12x^{2}-12x^{4}-25=-484x^{4}-220x^{2}
Subtract 25 from both sides.
12x^{2}-12x^{4}-25+484x^{4}=-220x^{2}
Add 484x^{4} to both sides.
12x^{2}+472x^{4}-25=-220x^{2}
Combine -12x^{4} and 484x^{4} to get 472x^{4}.
12x^{2}+472x^{4}-25+220x^{2}=0
Add 220x^{2} to both sides.
232x^{2}+472x^{4}-25=0
Combine 12x^{2} and 220x^{2} to get 232x^{2}.
472t^{2}+232t-25=0
Substitute t for x^{2}.
t=\frac{-232±\sqrt{232^{2}-4\times 472\left(-25\right)}}{2\times 472}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 472 for a, 232 for b, and -25 for c in the quadratic formula.
t=\frac{-232±4\sqrt{6314}}{944}
Do the calculations.
t=\frac{\sqrt{6314}}{236}-\frac{29}{118} t=-\frac{\sqrt{6314}}{236}-\frac{29}{118}
Solve the equation t=\frac{-232±4\sqrt{6314}}{944} when ± is plus and when ± is minus.
x=\frac{\sqrt{\frac{\sqrt{6314}-58}{59}}}{2} x=-\frac{\sqrt{\frac{\sqrt{6314}-58}{59}}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}