Factor
\left(4x-3\right)\left(3x+4\right)
Evaluate
\left(4x-3\right)\left(3x+4\right)
Graph
Share
Copied to clipboard
a+b=7 ab=12\left(-12\right)=-144
Factor the expression by grouping. First, the expression needs to be rewritten as 12x^{2}+ax+bx-12. To find a and b, set up a system to be solved.
-1,144 -2,72 -3,48 -4,36 -6,24 -8,18 -9,16 -12,12
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -144.
-1+144=143 -2+72=70 -3+48=45 -4+36=32 -6+24=18 -8+18=10 -9+16=7 -12+12=0
Calculate the sum for each pair.
a=-9 b=16
The solution is the pair that gives sum 7.
\left(12x^{2}-9x\right)+\left(16x-12\right)
Rewrite 12x^{2}+7x-12 as \left(12x^{2}-9x\right)+\left(16x-12\right).
3x\left(4x-3\right)+4\left(4x-3\right)
Factor out 3x in the first and 4 in the second group.
\left(4x-3\right)\left(3x+4\right)
Factor out common term 4x-3 by using distributive property.
12x^{2}+7x-12=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-7±\sqrt{7^{2}-4\times 12\left(-12\right)}}{2\times 12}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7±\sqrt{49-4\times 12\left(-12\right)}}{2\times 12}
Square 7.
x=\frac{-7±\sqrt{49-48\left(-12\right)}}{2\times 12}
Multiply -4 times 12.
x=\frac{-7±\sqrt{49+576}}{2\times 12}
Multiply -48 times -12.
x=\frac{-7±\sqrt{625}}{2\times 12}
Add 49 to 576.
x=\frac{-7±25}{2\times 12}
Take the square root of 625.
x=\frac{-7±25}{24}
Multiply 2 times 12.
x=\frac{18}{24}
Now solve the equation x=\frac{-7±25}{24} when ± is plus. Add -7 to 25.
x=\frac{3}{4}
Reduce the fraction \frac{18}{24} to lowest terms by extracting and canceling out 6.
x=-\frac{32}{24}
Now solve the equation x=\frac{-7±25}{24} when ± is minus. Subtract 25 from -7.
x=-\frac{4}{3}
Reduce the fraction \frac{-32}{24} to lowest terms by extracting and canceling out 8.
12x^{2}+7x-12=12\left(x-\frac{3}{4}\right)\left(x-\left(-\frac{4}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3}{4} for x_{1} and -\frac{4}{3} for x_{2}.
12x^{2}+7x-12=12\left(x-\frac{3}{4}\right)\left(x+\frac{4}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
12x^{2}+7x-12=12\times \frac{4x-3}{4}\left(x+\frac{4}{3}\right)
Subtract \frac{3}{4} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
12x^{2}+7x-12=12\times \frac{4x-3}{4}\times \frac{3x+4}{3}
Add \frac{4}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
12x^{2}+7x-12=12\times \frac{\left(4x-3\right)\left(3x+4\right)}{4\times 3}
Multiply \frac{4x-3}{4} times \frac{3x+4}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
12x^{2}+7x-12=12\times \frac{\left(4x-3\right)\left(3x+4\right)}{12}
Multiply 4 times 3.
12x^{2}+7x-12=\left(4x-3\right)\left(3x+4\right)
Cancel out 12, the greatest common factor in 12 and 12.
x ^ 2 +\frac{7}{12}x -1 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 12
r + s = -\frac{7}{12} rs = -1
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{7}{24} - u s = -\frac{7}{24} + u
Two numbers r and s sum up to -\frac{7}{12} exactly when the average of the two numbers is \frac{1}{2}*-\frac{7}{12} = -\frac{7}{24}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{7}{24} - u) (-\frac{7}{24} + u) = -1
To solve for unknown quantity u, substitute these in the product equation rs = -1
\frac{49}{576} - u^2 = -1
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -1-\frac{49}{576} = -\frac{625}{576}
Simplify the expression by subtracting \frac{49}{576} on both sides
u^2 = \frac{625}{576} u = \pm\sqrt{\frac{625}{576}} = \pm \frac{25}{24}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{7}{24} - \frac{25}{24} = -1.333 s = -\frac{7}{24} + \frac{25}{24} = 0.750
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}