Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(4x^{2}+23x+15\right)
Factor out 3.
a+b=23 ab=4\times 15=60
Consider 4x^{2}+23x+15. Factor the expression by grouping. First, the expression needs to be rewritten as 4x^{2}+ax+bx+15. To find a and b, set up a system to be solved.
1,60 2,30 3,20 4,15 5,12 6,10
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 60.
1+60=61 2+30=32 3+20=23 4+15=19 5+12=17 6+10=16
Calculate the sum for each pair.
a=3 b=20
The solution is the pair that gives sum 23.
\left(4x^{2}+3x\right)+\left(20x+15\right)
Rewrite 4x^{2}+23x+15 as \left(4x^{2}+3x\right)+\left(20x+15\right).
x\left(4x+3\right)+5\left(4x+3\right)
Factor out x in the first and 5 in the second group.
\left(4x+3\right)\left(x+5\right)
Factor out common term 4x+3 by using distributive property.
3\left(4x+3\right)\left(x+5\right)
Rewrite the complete factored expression.
12x^{2}+69x+45=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-69±\sqrt{69^{2}-4\times 12\times 45}}{2\times 12}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-69±\sqrt{4761-4\times 12\times 45}}{2\times 12}
Square 69.
x=\frac{-69±\sqrt{4761-48\times 45}}{2\times 12}
Multiply -4 times 12.
x=\frac{-69±\sqrt{4761-2160}}{2\times 12}
Multiply -48 times 45.
x=\frac{-69±\sqrt{2601}}{2\times 12}
Add 4761 to -2160.
x=\frac{-69±51}{2\times 12}
Take the square root of 2601.
x=\frac{-69±51}{24}
Multiply 2 times 12.
x=-\frac{18}{24}
Now solve the equation x=\frac{-69±51}{24} when ± is plus. Add -69 to 51.
x=-\frac{3}{4}
Reduce the fraction \frac{-18}{24} to lowest terms by extracting and canceling out 6.
x=-\frac{120}{24}
Now solve the equation x=\frac{-69±51}{24} when ± is minus. Subtract 51 from -69.
x=-5
Divide -120 by 24.
12x^{2}+69x+45=12\left(x-\left(-\frac{3}{4}\right)\right)\left(x-\left(-5\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{3}{4} for x_{1} and -5 for x_{2}.
12x^{2}+69x+45=12\left(x+\frac{3}{4}\right)\left(x+5\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
12x^{2}+69x+45=12\times \frac{4x+3}{4}\left(x+5\right)
Add \frac{3}{4} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
12x^{2}+69x+45=3\left(4x+3\right)\left(x+5\right)
Cancel out 4, the greatest common factor in 12 and 4.
x ^ 2 +\frac{23}{4}x +\frac{15}{4} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 12
r + s = -\frac{23}{4} rs = \frac{15}{4}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{23}{8} - u s = -\frac{23}{8} + u
Two numbers r and s sum up to -\frac{23}{4} exactly when the average of the two numbers is \frac{1}{2}*-\frac{23}{4} = -\frac{23}{8}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{23}{8} - u) (-\frac{23}{8} + u) = \frac{15}{4}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{15}{4}
\frac{529}{64} - u^2 = \frac{15}{4}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{15}{4}-\frac{529}{64} = -\frac{289}{64}
Simplify the expression by subtracting \frac{529}{64} on both sides
u^2 = \frac{289}{64} u = \pm\sqrt{\frac{289}{64}} = \pm \frac{17}{8}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{23}{8} - \frac{17}{8} = -5 s = -\frac{23}{8} + \frac{17}{8} = -0.750
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.