Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

12x^{2}+4x+10=6-6x^{2}-126
Use the distributive property to multiply 2 by 3-3x^{2}.
12x^{2}+4x+10=-120-6x^{2}
Subtract 126 from 6 to get -120.
12x^{2}+4x+10-\left(-120\right)=-6x^{2}
Subtract -120 from both sides.
12x^{2}+4x+10+120=-6x^{2}
The opposite of -120 is 120.
12x^{2}+4x+10+120+6x^{2}=0
Add 6x^{2} to both sides.
12x^{2}+4x+130+6x^{2}=0
Add 10 and 120 to get 130.
18x^{2}+4x+130=0
Combine 12x^{2} and 6x^{2} to get 18x^{2}.
x=\frac{-4±\sqrt{4^{2}-4\times 18\times 130}}{2\times 18}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 18 for a, 4 for b, and 130 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 18\times 130}}{2\times 18}
Square 4.
x=\frac{-4±\sqrt{16-72\times 130}}{2\times 18}
Multiply -4 times 18.
x=\frac{-4±\sqrt{16-9360}}{2\times 18}
Multiply -72 times 130.
x=\frac{-4±\sqrt{-9344}}{2\times 18}
Add 16 to -9360.
x=\frac{-4±8\sqrt{146}i}{2\times 18}
Take the square root of -9344.
x=\frac{-4±8\sqrt{146}i}{36}
Multiply 2 times 18.
x=\frac{-4+8\sqrt{146}i}{36}
Now solve the equation x=\frac{-4±8\sqrt{146}i}{36} when ± is plus. Add -4 to 8i\sqrt{146}.
x=\frac{-1+2\sqrt{146}i}{9}
Divide -4+8i\sqrt{146} by 36.
x=\frac{-8\sqrt{146}i-4}{36}
Now solve the equation x=\frac{-4±8\sqrt{146}i}{36} when ± is minus. Subtract 8i\sqrt{146} from -4.
x=\frac{-2\sqrt{146}i-1}{9}
Divide -4-8i\sqrt{146} by 36.
x=\frac{-1+2\sqrt{146}i}{9} x=\frac{-2\sqrt{146}i-1}{9}
The equation is now solved.
12x^{2}+4x+10=6-6x^{2}-126
Use the distributive property to multiply 2 by 3-3x^{2}.
12x^{2}+4x+10=-120-6x^{2}
Subtract 126 from 6 to get -120.
12x^{2}+4x+10+6x^{2}=-120
Add 6x^{2} to both sides.
18x^{2}+4x+10=-120
Combine 12x^{2} and 6x^{2} to get 18x^{2}.
18x^{2}+4x=-120-10
Subtract 10 from both sides.
18x^{2}+4x=-130
Subtract 10 from -120 to get -130.
\frac{18x^{2}+4x}{18}=-\frac{130}{18}
Divide both sides by 18.
x^{2}+\frac{4}{18}x=-\frac{130}{18}
Dividing by 18 undoes the multiplication by 18.
x^{2}+\frac{2}{9}x=-\frac{130}{18}
Reduce the fraction \frac{4}{18} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{2}{9}x=-\frac{65}{9}
Reduce the fraction \frac{-130}{18} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{2}{9}x+\left(\frac{1}{9}\right)^{2}=-\frac{65}{9}+\left(\frac{1}{9}\right)^{2}
Divide \frac{2}{9}, the coefficient of the x term, by 2 to get \frac{1}{9}. Then add the square of \frac{1}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{9}x+\frac{1}{81}=-\frac{65}{9}+\frac{1}{81}
Square \frac{1}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{9}x+\frac{1}{81}=-\frac{584}{81}
Add -\frac{65}{9} to \frac{1}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{9}\right)^{2}=-\frac{584}{81}
Factor x^{2}+\frac{2}{9}x+\frac{1}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{9}\right)^{2}}=\sqrt{-\frac{584}{81}}
Take the square root of both sides of the equation.
x+\frac{1}{9}=\frac{2\sqrt{146}i}{9} x+\frac{1}{9}=-\frac{2\sqrt{146}i}{9}
Simplify.
x=\frac{-1+2\sqrt{146}i}{9} x=\frac{-2\sqrt{146}i-1}{9}
Subtract \frac{1}{9} from both sides of the equation.