Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

12x^{2}+3x=5
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
12x^{2}+3x-5=5-5
Subtract 5 from both sides of the equation.
12x^{2}+3x-5=0
Subtracting 5 from itself leaves 0.
x=\frac{-3±\sqrt{3^{2}-4\times 12\left(-5\right)}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, 3 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 12\left(-5\right)}}{2\times 12}
Square 3.
x=\frac{-3±\sqrt{9-48\left(-5\right)}}{2\times 12}
Multiply -4 times 12.
x=\frac{-3±\sqrt{9+240}}{2\times 12}
Multiply -48 times -5.
x=\frac{-3±\sqrt{249}}{2\times 12}
Add 9 to 240.
x=\frac{-3±\sqrt{249}}{24}
Multiply 2 times 12.
x=\frac{\sqrt{249}-3}{24}
Now solve the equation x=\frac{-3±\sqrt{249}}{24} when ± is plus. Add -3 to \sqrt{249}.
x=\frac{\sqrt{249}}{24}-\frac{1}{8}
Divide -3+\sqrt{249} by 24.
x=\frac{-\sqrt{249}-3}{24}
Now solve the equation x=\frac{-3±\sqrt{249}}{24} when ± is minus. Subtract \sqrt{249} from -3.
x=-\frac{\sqrt{249}}{24}-\frac{1}{8}
Divide -3-\sqrt{249} by 24.
x=\frac{\sqrt{249}}{24}-\frac{1}{8} x=-\frac{\sqrt{249}}{24}-\frac{1}{8}
The equation is now solved.
12x^{2}+3x=5
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{12x^{2}+3x}{12}=\frac{5}{12}
Divide both sides by 12.
x^{2}+\frac{3}{12}x=\frac{5}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}+\frac{1}{4}x=\frac{5}{12}
Reduce the fraction \frac{3}{12} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{1}{4}x+\left(\frac{1}{8}\right)^{2}=\frac{5}{12}+\left(\frac{1}{8}\right)^{2}
Divide \frac{1}{4}, the coefficient of the x term, by 2 to get \frac{1}{8}. Then add the square of \frac{1}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{4}x+\frac{1}{64}=\frac{5}{12}+\frac{1}{64}
Square \frac{1}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{4}x+\frac{1}{64}=\frac{83}{192}
Add \frac{5}{12} to \frac{1}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{8}\right)^{2}=\frac{83}{192}
Factor x^{2}+\frac{1}{4}x+\frac{1}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{8}\right)^{2}}=\sqrt{\frac{83}{192}}
Take the square root of both sides of the equation.
x+\frac{1}{8}=\frac{\sqrt{249}}{24} x+\frac{1}{8}=-\frac{\sqrt{249}}{24}
Simplify.
x=\frac{\sqrt{249}}{24}-\frac{1}{8} x=-\frac{\sqrt{249}}{24}-\frac{1}{8}
Subtract \frac{1}{8} from both sides of the equation.