Factor
\left(3x+2\right)\left(4x+5\right)
Evaluate
\left(3x+2\right)\left(4x+5\right)
Graph
Share
Copied to clipboard
12x^{2}+23x+10
Multiply and combine like terms.
a+b=23 ab=12\times 10=120
Factor the expression by grouping. First, the expression needs to be rewritten as 12x^{2}+ax+bx+10. To find a and b, set up a system to be solved.
1,120 2,60 3,40 4,30 5,24 6,20 8,15 10,12
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 120.
1+120=121 2+60=62 3+40=43 4+30=34 5+24=29 6+20=26 8+15=23 10+12=22
Calculate the sum for each pair.
a=8 b=15
The solution is the pair that gives sum 23.
\left(12x^{2}+8x\right)+\left(15x+10\right)
Rewrite 12x^{2}+23x+10 as \left(12x^{2}+8x\right)+\left(15x+10\right).
4x\left(3x+2\right)+5\left(3x+2\right)
Factor out 4x in the first and 5 in the second group.
\left(3x+2\right)\left(4x+5\right)
Factor out common term 3x+2 by using distributive property.
12x^{2}+23x+10
Combine 15x and 8x to get 23x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}