Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

12x-1268=-4x^{2}
Subtract 1268 from both sides.
12x-1268+4x^{2}=0
Add 4x^{2} to both sides.
4x^{2}+12x-1268=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{12^{2}-4\times 4\left(-1268\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 12 for b, and -1268 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 4\left(-1268\right)}}{2\times 4}
Square 12.
x=\frac{-12±\sqrt{144-16\left(-1268\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-12±\sqrt{144+20288}}{2\times 4}
Multiply -16 times -1268.
x=\frac{-12±\sqrt{20432}}{2\times 4}
Add 144 to 20288.
x=\frac{-12±4\sqrt{1277}}{2\times 4}
Take the square root of 20432.
x=\frac{-12±4\sqrt{1277}}{8}
Multiply 2 times 4.
x=\frac{4\sqrt{1277}-12}{8}
Now solve the equation x=\frac{-12±4\sqrt{1277}}{8} when ± is plus. Add -12 to 4\sqrt{1277}.
x=\frac{\sqrt{1277}-3}{2}
Divide -12+4\sqrt{1277} by 8.
x=\frac{-4\sqrt{1277}-12}{8}
Now solve the equation x=\frac{-12±4\sqrt{1277}}{8} when ± is minus. Subtract 4\sqrt{1277} from -12.
x=\frac{-\sqrt{1277}-3}{2}
Divide -12-4\sqrt{1277} by 8.
x=\frac{\sqrt{1277}-3}{2} x=\frac{-\sqrt{1277}-3}{2}
The equation is now solved.
12x+4x^{2}=1268
Add 4x^{2} to both sides.
4x^{2}+12x=1268
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}+12x}{4}=\frac{1268}{4}
Divide both sides by 4.
x^{2}+\frac{12}{4}x=\frac{1268}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+3x=\frac{1268}{4}
Divide 12 by 4.
x^{2}+3x=317
Divide 1268 by 4.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=317+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=317+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=\frac{1277}{4}
Add 317 to \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{1277}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{1277}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{\sqrt{1277}}{2} x+\frac{3}{2}=-\frac{\sqrt{1277}}{2}
Simplify.
x=\frac{\sqrt{1277}-3}{2} x=\frac{-\sqrt{1277}-3}{2}
Subtract \frac{3}{2} from both sides of the equation.