Solve for x
x=\frac{\sqrt{30}}{6}-\frac{1}{2}\approx 0.412870929
x=-\frac{\sqrt{30}}{6}-\frac{1}{2}\approx -1.412870929
Graph
Share
Copied to clipboard
12x+12x^{2}=7
Add 12x^{2} to both sides.
12x+12x^{2}-7=0
Subtract 7 from both sides.
12x^{2}+12x-7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{12^{2}-4\times 12\left(-7\right)}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, 12 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 12\left(-7\right)}}{2\times 12}
Square 12.
x=\frac{-12±\sqrt{144-48\left(-7\right)}}{2\times 12}
Multiply -4 times 12.
x=\frac{-12±\sqrt{144+336}}{2\times 12}
Multiply -48 times -7.
x=\frac{-12±\sqrt{480}}{2\times 12}
Add 144 to 336.
x=\frac{-12±4\sqrt{30}}{2\times 12}
Take the square root of 480.
x=\frac{-12±4\sqrt{30}}{24}
Multiply 2 times 12.
x=\frac{4\sqrt{30}-12}{24}
Now solve the equation x=\frac{-12±4\sqrt{30}}{24} when ± is plus. Add -12 to 4\sqrt{30}.
x=\frac{\sqrt{30}}{6}-\frac{1}{2}
Divide -12+4\sqrt{30} by 24.
x=\frac{-4\sqrt{30}-12}{24}
Now solve the equation x=\frac{-12±4\sqrt{30}}{24} when ± is minus. Subtract 4\sqrt{30} from -12.
x=-\frac{\sqrt{30}}{6}-\frac{1}{2}
Divide -12-4\sqrt{30} by 24.
x=\frac{\sqrt{30}}{6}-\frac{1}{2} x=-\frac{\sqrt{30}}{6}-\frac{1}{2}
The equation is now solved.
12x+12x^{2}=7
Add 12x^{2} to both sides.
12x^{2}+12x=7
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{12x^{2}+12x}{12}=\frac{7}{12}
Divide both sides by 12.
x^{2}+\frac{12}{12}x=\frac{7}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}+x=\frac{7}{12}
Divide 12 by 12.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{7}{12}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=\frac{7}{12}+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{5}{6}
Add \frac{7}{12} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{2}\right)^{2}=\frac{5}{6}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{5}{6}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{30}}{6} x+\frac{1}{2}=-\frac{\sqrt{30}}{6}
Simplify.
x=\frac{\sqrt{30}}{6}-\frac{1}{2} x=-\frac{\sqrt{30}}{6}-\frac{1}{2}
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}