Solve for x
x = \frac{\sqrt{13} + 3}{4} \approx 1.651387819
x=\frac{3-\sqrt{13}}{4}\approx -0.151387819
Graph
Share
Copied to clipboard
12x+2-8x^{2}=0
Subtract 8x^{2} from both sides.
-8x^{2}+12x+2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{12^{2}-4\left(-8\right)\times 2}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, 12 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\left(-8\right)\times 2}}{2\left(-8\right)}
Square 12.
x=\frac{-12±\sqrt{144+32\times 2}}{2\left(-8\right)}
Multiply -4 times -8.
x=\frac{-12±\sqrt{144+64}}{2\left(-8\right)}
Multiply 32 times 2.
x=\frac{-12±\sqrt{208}}{2\left(-8\right)}
Add 144 to 64.
x=\frac{-12±4\sqrt{13}}{2\left(-8\right)}
Take the square root of 208.
x=\frac{-12±4\sqrt{13}}{-16}
Multiply 2 times -8.
x=\frac{4\sqrt{13}-12}{-16}
Now solve the equation x=\frac{-12±4\sqrt{13}}{-16} when ± is plus. Add -12 to 4\sqrt{13}.
x=\frac{3-\sqrt{13}}{4}
Divide -12+4\sqrt{13} by -16.
x=\frac{-4\sqrt{13}-12}{-16}
Now solve the equation x=\frac{-12±4\sqrt{13}}{-16} when ± is minus. Subtract 4\sqrt{13} from -12.
x=\frac{\sqrt{13}+3}{4}
Divide -12-4\sqrt{13} by -16.
x=\frac{3-\sqrt{13}}{4} x=\frac{\sqrt{13}+3}{4}
The equation is now solved.
12x+2-8x^{2}=0
Subtract 8x^{2} from both sides.
12x-8x^{2}=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
-8x^{2}+12x=-2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-8x^{2}+12x}{-8}=-\frac{2}{-8}
Divide both sides by -8.
x^{2}+\frac{12}{-8}x=-\frac{2}{-8}
Dividing by -8 undoes the multiplication by -8.
x^{2}-\frac{3}{2}x=-\frac{2}{-8}
Reduce the fraction \frac{12}{-8} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{3}{2}x=\frac{1}{4}
Reduce the fraction \frac{-2}{-8} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=\frac{1}{4}+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{1}{4}+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{13}{16}
Add \frac{1}{4} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{4}\right)^{2}=\frac{13}{16}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{13}{16}}
Take the square root of both sides of the equation.
x-\frac{3}{4}=\frac{\sqrt{13}}{4} x-\frac{3}{4}=-\frac{\sqrt{13}}{4}
Simplify.
x=\frac{\sqrt{13}+3}{4} x=\frac{3-\sqrt{13}}{4}
Add \frac{3}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}