Factor
\left(3t-2\right)\left(4t-1\right)
Evaluate
\left(3t-2\right)\left(4t-1\right)
Share
Copied to clipboard
12t^{2}-11t+2
Multiply and combine like terms.
a+b=-11 ab=12\times 2=24
Factor the expression by grouping. First, the expression needs to be rewritten as 12t^{2}+at+bt+2. To find a and b, set up a system to be solved.
-1,-24 -2,-12 -3,-8 -4,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Calculate the sum for each pair.
a=-8 b=-3
The solution is the pair that gives sum -11.
\left(12t^{2}-8t\right)+\left(-3t+2\right)
Rewrite 12t^{2}-11t+2 as \left(12t^{2}-8t\right)+\left(-3t+2\right).
4t\left(3t-2\right)-\left(3t-2\right)
Factor out 4t in the first and -1 in the second group.
\left(3t-2\right)\left(4t-1\right)
Factor out common term 3t-2 by using distributive property.
12t^{2}-11t+2
Combine -8t and -3t to get -11t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}