Factor
\left(6p-5\right)\left(2p+3\right)
Evaluate
\left(6p-5\right)\left(2p+3\right)
Share
Copied to clipboard
a+b=8 ab=12\left(-15\right)=-180
Factor the expression by grouping. First, the expression needs to be rewritten as 12p^{2}+ap+bp-15. To find a and b, set up a system to be solved.
-1,180 -2,90 -3,60 -4,45 -5,36 -6,30 -9,20 -10,18 -12,15
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -180.
-1+180=179 -2+90=88 -3+60=57 -4+45=41 -5+36=31 -6+30=24 -9+20=11 -10+18=8 -12+15=3
Calculate the sum for each pair.
a=-10 b=18
The solution is the pair that gives sum 8.
\left(12p^{2}-10p\right)+\left(18p-15\right)
Rewrite 12p^{2}+8p-15 as \left(12p^{2}-10p\right)+\left(18p-15\right).
2p\left(6p-5\right)+3\left(6p-5\right)
Factor out 2p in the first and 3 in the second group.
\left(6p-5\right)\left(2p+3\right)
Factor out common term 6p-5 by using distributive property.
12p^{2}+8p-15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
p=\frac{-8±\sqrt{8^{2}-4\times 12\left(-15\right)}}{2\times 12}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-8±\sqrt{64-4\times 12\left(-15\right)}}{2\times 12}
Square 8.
p=\frac{-8±\sqrt{64-48\left(-15\right)}}{2\times 12}
Multiply -4 times 12.
p=\frac{-8±\sqrt{64+720}}{2\times 12}
Multiply -48 times -15.
p=\frac{-8±\sqrt{784}}{2\times 12}
Add 64 to 720.
p=\frac{-8±28}{2\times 12}
Take the square root of 784.
p=\frac{-8±28}{24}
Multiply 2 times 12.
p=\frac{20}{24}
Now solve the equation p=\frac{-8±28}{24} when ± is plus. Add -8 to 28.
p=\frac{5}{6}
Reduce the fraction \frac{20}{24} to lowest terms by extracting and canceling out 4.
p=-\frac{36}{24}
Now solve the equation p=\frac{-8±28}{24} when ± is minus. Subtract 28 from -8.
p=-\frac{3}{2}
Reduce the fraction \frac{-36}{24} to lowest terms by extracting and canceling out 12.
12p^{2}+8p-15=12\left(p-\frac{5}{6}\right)\left(p-\left(-\frac{3}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5}{6} for x_{1} and -\frac{3}{2} for x_{2}.
12p^{2}+8p-15=12\left(p-\frac{5}{6}\right)\left(p+\frac{3}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
12p^{2}+8p-15=12\times \frac{6p-5}{6}\left(p+\frac{3}{2}\right)
Subtract \frac{5}{6} from p by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
12p^{2}+8p-15=12\times \frac{6p-5}{6}\times \frac{2p+3}{2}
Add \frac{3}{2} to p by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
12p^{2}+8p-15=12\times \frac{\left(6p-5\right)\left(2p+3\right)}{6\times 2}
Multiply \frac{6p-5}{6} times \frac{2p+3}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
12p^{2}+8p-15=12\times \frac{\left(6p-5\right)\left(2p+3\right)}{12}
Multiply 6 times 2.
12p^{2}+8p-15=\left(6p-5\right)\left(2p+3\right)
Cancel out 12, the greatest common factor in 12 and 12.
x ^ 2 +\frac{2}{3}x -\frac{5}{4} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 12
r + s = -\frac{2}{3} rs = -\frac{5}{4}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{1}{3} - u s = -\frac{1}{3} + u
Two numbers r and s sum up to -\frac{2}{3} exactly when the average of the two numbers is \frac{1}{2}*-\frac{2}{3} = -\frac{1}{3}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{1}{3} - u) (-\frac{1}{3} + u) = -\frac{5}{4}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{5}{4}
\frac{1}{9} - u^2 = -\frac{5}{4}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{5}{4}-\frac{1}{9} = -\frac{49}{36}
Simplify the expression by subtracting \frac{1}{9} on both sides
u^2 = \frac{49}{36} u = \pm\sqrt{\frac{49}{36}} = \pm \frac{7}{6}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{1}{3} - \frac{7}{6} = -1.500 s = -\frac{1}{3} + \frac{7}{6} = 0.833
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}