Solve for m (complex solution)
\left\{\begin{matrix}m=\frac{ek}{4\left(5x+y\right)}\text{, }&x\neq -\frac{y}{5}\\m\in \mathrm{C}\text{, }&k=0\text{ and }x\neq -\frac{y}{5}\end{matrix}\right.
Solve for m
\left\{\begin{matrix}m=\frac{ek}{4\left(5x+y\right)}\text{, }&x\neq -\frac{y}{5}\\m\in \mathrm{R}\text{, }&k=0\text{ and }x\neq -\frac{y}{5}\end{matrix}\right.
Solve for k
k=\frac{4m\left(5x+y\right)}{e}
k=0\text{, }x\neq -\frac{y}{5}
Graph
Share
Copied to clipboard
12mk\left(5x+y\right)=3ek^{2}
Multiply both sides of the equation by 5x+y.
60kmx+12mky=3ek^{2}
Use the distributive property to multiply 12mk by 5x+y.
\left(60kx+12ky\right)m=3ek^{2}
Combine all terms containing m.
\frac{\left(60kx+12ky\right)m}{60kx+12ky}=\frac{3ek^{2}}{60kx+12ky}
Divide both sides by 60kx+12ky.
m=\frac{3ek^{2}}{60kx+12ky}
Dividing by 60kx+12ky undoes the multiplication by 60kx+12ky.
m=\frac{ek}{4\left(5x+y\right)}
Divide 3ek^{2} by 60kx+12ky.
12mk\left(5x+y\right)=3ek^{2}
Multiply both sides of the equation by 5x+y.
60kmx+12mky=3ek^{2}
Use the distributive property to multiply 12mk by 5x+y.
\left(60kx+12ky\right)m=3ek^{2}
Combine all terms containing m.
\frac{\left(60kx+12ky\right)m}{60kx+12ky}=\frac{3ek^{2}}{60kx+12ky}
Divide both sides by 60kx+12ky.
m=\frac{3ek^{2}}{60kx+12ky}
Dividing by 60kx+12ky undoes the multiplication by 60kx+12ky.
m=\frac{ek}{4\left(5x+y\right)}
Divide 3ek^{2} by 60kx+12ky.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}