Factor
3\left(k-1\right)\left(4k+9\right)
Evaluate
3\left(k-1\right)\left(4k+9\right)
Share
Copied to clipboard
3\left(4k^{2}+5k-9\right)
Factor out 3.
a+b=5 ab=4\left(-9\right)=-36
Consider 4k^{2}+5k-9. Factor the expression by grouping. First, the expression needs to be rewritten as 4k^{2}+ak+bk-9. To find a and b, set up a system to be solved.
-1,36 -2,18 -3,12 -4,9 -6,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -36.
-1+36=35 -2+18=16 -3+12=9 -4+9=5 -6+6=0
Calculate the sum for each pair.
a=-4 b=9
The solution is the pair that gives sum 5.
\left(4k^{2}-4k\right)+\left(9k-9\right)
Rewrite 4k^{2}+5k-9 as \left(4k^{2}-4k\right)+\left(9k-9\right).
4k\left(k-1\right)+9\left(k-1\right)
Factor out 4k in the first and 9 in the second group.
\left(k-1\right)\left(4k+9\right)
Factor out common term k-1 by using distributive property.
3\left(k-1\right)\left(4k+9\right)
Rewrite the complete factored expression.
12k^{2}+15k-27=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
k=\frac{-15±\sqrt{15^{2}-4\times 12\left(-27\right)}}{2\times 12}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-15±\sqrt{225-4\times 12\left(-27\right)}}{2\times 12}
Square 15.
k=\frac{-15±\sqrt{225-48\left(-27\right)}}{2\times 12}
Multiply -4 times 12.
k=\frac{-15±\sqrt{225+1296}}{2\times 12}
Multiply -48 times -27.
k=\frac{-15±\sqrt{1521}}{2\times 12}
Add 225 to 1296.
k=\frac{-15±39}{2\times 12}
Take the square root of 1521.
k=\frac{-15±39}{24}
Multiply 2 times 12.
k=\frac{24}{24}
Now solve the equation k=\frac{-15±39}{24} when ± is plus. Add -15 to 39.
k=1
Divide 24 by 24.
k=-\frac{54}{24}
Now solve the equation k=\frac{-15±39}{24} when ± is minus. Subtract 39 from -15.
k=-\frac{9}{4}
Reduce the fraction \frac{-54}{24} to lowest terms by extracting and canceling out 6.
12k^{2}+15k-27=12\left(k-1\right)\left(k-\left(-\frac{9}{4}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 1 for x_{1} and -\frac{9}{4} for x_{2}.
12k^{2}+15k-27=12\left(k-1\right)\left(k+\frac{9}{4}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
12k^{2}+15k-27=12\left(k-1\right)\times \frac{4k+9}{4}
Add \frac{9}{4} to k by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
12k^{2}+15k-27=3\left(k-1\right)\left(4k+9\right)
Cancel out 4, the greatest common factor in 12 and 4.
x ^ 2 +\frac{5}{4}x -\frac{9}{4} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 12
r + s = -\frac{5}{4} rs = -\frac{9}{4}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{5}{8} - u s = -\frac{5}{8} + u
Two numbers r and s sum up to -\frac{5}{4} exactly when the average of the two numbers is \frac{1}{2}*-\frac{5}{4} = -\frac{5}{8}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{5}{8} - u) (-\frac{5}{8} + u) = -\frac{9}{4}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{9}{4}
\frac{25}{64} - u^2 = -\frac{9}{4}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{9}{4}-\frac{25}{64} = -\frac{169}{64}
Simplify the expression by subtracting \frac{25}{64} on both sides
u^2 = \frac{169}{64} u = \pm\sqrt{\frac{169}{64}} = \pm \frac{13}{8}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{5}{8} - \frac{13}{8} = -2.250 s = -\frac{5}{8} + \frac{13}{8} = 1
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}