Solve for h
h = \frac{\sqrt{6361} + 139}{6} \approx 36.459312921
h = \frac{139 - \sqrt{6361}}{6} \approx 9.874020412
Share
Copied to clipboard
12h^{2}-556h+4320=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
h=\frac{-\left(-556\right)±\sqrt{\left(-556\right)^{2}-4\times 12\times 4320}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, -556 for b, and 4320 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
h=\frac{-\left(-556\right)±\sqrt{309136-4\times 12\times 4320}}{2\times 12}
Square -556.
h=\frac{-\left(-556\right)±\sqrt{309136-48\times 4320}}{2\times 12}
Multiply -4 times 12.
h=\frac{-\left(-556\right)±\sqrt{309136-207360}}{2\times 12}
Multiply -48 times 4320.
h=\frac{-\left(-556\right)±\sqrt{101776}}{2\times 12}
Add 309136 to -207360.
h=\frac{-\left(-556\right)±4\sqrt{6361}}{2\times 12}
Take the square root of 101776.
h=\frac{556±4\sqrt{6361}}{2\times 12}
The opposite of -556 is 556.
h=\frac{556±4\sqrt{6361}}{24}
Multiply 2 times 12.
h=\frac{4\sqrt{6361}+556}{24}
Now solve the equation h=\frac{556±4\sqrt{6361}}{24} when ± is plus. Add 556 to 4\sqrt{6361}.
h=\frac{\sqrt{6361}+139}{6}
Divide 556+4\sqrt{6361} by 24.
h=\frac{556-4\sqrt{6361}}{24}
Now solve the equation h=\frac{556±4\sqrt{6361}}{24} when ± is minus. Subtract 4\sqrt{6361} from 556.
h=\frac{139-\sqrt{6361}}{6}
Divide 556-4\sqrt{6361} by 24.
h=\frac{\sqrt{6361}+139}{6} h=\frac{139-\sqrt{6361}}{6}
The equation is now solved.
12h^{2}-556h+4320=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
12h^{2}-556h+4320-4320=-4320
Subtract 4320 from both sides of the equation.
12h^{2}-556h=-4320
Subtracting 4320 from itself leaves 0.
\frac{12h^{2}-556h}{12}=-\frac{4320}{12}
Divide both sides by 12.
h^{2}+\left(-\frac{556}{12}\right)h=-\frac{4320}{12}
Dividing by 12 undoes the multiplication by 12.
h^{2}-\frac{139}{3}h=-\frac{4320}{12}
Reduce the fraction \frac{-556}{12} to lowest terms by extracting and canceling out 4.
h^{2}-\frac{139}{3}h=-360
Divide -4320 by 12.
h^{2}-\frac{139}{3}h+\left(-\frac{139}{6}\right)^{2}=-360+\left(-\frac{139}{6}\right)^{2}
Divide -\frac{139}{3}, the coefficient of the x term, by 2 to get -\frac{139}{6}. Then add the square of -\frac{139}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
h^{2}-\frac{139}{3}h+\frac{19321}{36}=-360+\frac{19321}{36}
Square -\frac{139}{6} by squaring both the numerator and the denominator of the fraction.
h^{2}-\frac{139}{3}h+\frac{19321}{36}=\frac{6361}{36}
Add -360 to \frac{19321}{36}.
\left(h-\frac{139}{6}\right)^{2}=\frac{6361}{36}
Factor h^{2}-\frac{139}{3}h+\frac{19321}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(h-\frac{139}{6}\right)^{2}}=\sqrt{\frac{6361}{36}}
Take the square root of both sides of the equation.
h-\frac{139}{6}=\frac{\sqrt{6361}}{6} h-\frac{139}{6}=-\frac{\sqrt{6361}}{6}
Simplify.
h=\frac{\sqrt{6361}+139}{6} h=\frac{139-\sqrt{6361}}{6}
Add \frac{139}{6} to both sides of the equation.
x ^ 2 -\frac{139}{3}x +360 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 12
r + s = \frac{139}{3} rs = 360
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{139}{6} - u s = \frac{139}{6} + u
Two numbers r and s sum up to \frac{139}{3} exactly when the average of the two numbers is \frac{1}{2}*\frac{139}{3} = \frac{139}{6}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{139}{6} - u) (\frac{139}{6} + u) = 360
To solve for unknown quantity u, substitute these in the product equation rs = 360
\frac{19321}{36} - u^2 = 360
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 360-\frac{19321}{36} = -\frac{6361}{36}
Simplify the expression by subtracting \frac{19321}{36} on both sides
u^2 = \frac{6361}{36} u = \pm\sqrt{\frac{6361}{36}} = \pm \frac{\sqrt{6361}}{6}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{139}{6} - \frac{\sqrt{6361}}{6} = 9.874 s = \frac{139}{6} + \frac{\sqrt{6361}}{6} = 36.459
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}