Solve for c
c = \frac{\sqrt{93}}{6} \approx 1.607275127
c = -\frac{\sqrt{93}}{6} \approx -1.607275127
Share
Copied to clipboard
12c^{2}=12+19
Add 19 to both sides.
12c^{2}=31
Add 12 and 19 to get 31.
c^{2}=\frac{31}{12}
Divide both sides by 12.
c=\frac{\sqrt{93}}{6} c=-\frac{\sqrt{93}}{6}
Take the square root of both sides of the equation.
12c^{2}-19-12=0
Subtract 12 from both sides.
12c^{2}-31=0
Subtract 12 from -19 to get -31.
c=\frac{0±\sqrt{0^{2}-4\times 12\left(-31\right)}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, 0 for b, and -31 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{0±\sqrt{-4\times 12\left(-31\right)}}{2\times 12}
Square 0.
c=\frac{0±\sqrt{-48\left(-31\right)}}{2\times 12}
Multiply -4 times 12.
c=\frac{0±\sqrt{1488}}{2\times 12}
Multiply -48 times -31.
c=\frac{0±4\sqrt{93}}{2\times 12}
Take the square root of 1488.
c=\frac{0±4\sqrt{93}}{24}
Multiply 2 times 12.
c=\frac{\sqrt{93}}{6}
Now solve the equation c=\frac{0±4\sqrt{93}}{24} when ± is plus.
c=-\frac{\sqrt{93}}{6}
Now solve the equation c=\frac{0±4\sqrt{93}}{24} when ± is minus.
c=\frac{\sqrt{93}}{6} c=-\frac{\sqrt{93}}{6}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}