Skip to main content
Solve for c
Tick mark Image

Similar Problems from Web Search

Share

12c^{2}=12+19
Add 19 to both sides.
12c^{2}=31
Add 12 and 19 to get 31.
c^{2}=\frac{31}{12}
Divide both sides by 12.
c=\frac{\sqrt{93}}{6} c=-\frac{\sqrt{93}}{6}
Take the square root of both sides of the equation.
12c^{2}-19-12=0
Subtract 12 from both sides.
12c^{2}-31=0
Subtract 12 from -19 to get -31.
c=\frac{0±\sqrt{0^{2}-4\times 12\left(-31\right)}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, 0 for b, and -31 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{0±\sqrt{-4\times 12\left(-31\right)}}{2\times 12}
Square 0.
c=\frac{0±\sqrt{-48\left(-31\right)}}{2\times 12}
Multiply -4 times 12.
c=\frac{0±\sqrt{1488}}{2\times 12}
Multiply -48 times -31.
c=\frac{0±4\sqrt{93}}{2\times 12}
Take the square root of 1488.
c=\frac{0±4\sqrt{93}}{24}
Multiply 2 times 12.
c=\frac{\sqrt{93}}{6}
Now solve the equation c=\frac{0±4\sqrt{93}}{24} when ± is plus.
c=-\frac{\sqrt{93}}{6}
Now solve the equation c=\frac{0±4\sqrt{93}}{24} when ± is minus.
c=\frac{\sqrt{93}}{6} c=-\frac{\sqrt{93}}{6}
The equation is now solved.