Factor
3b\left(4b-5\right)
Evaluate
3b\left(4b-5\right)
Share
Copied to clipboard
3\left(4b^{2}-5b\right)
Factor out 3.
b\left(4b-5\right)
Consider 4b^{2}-5b. Factor out b.
3b\left(4b-5\right)
Rewrite the complete factored expression.
12b^{2}-15b=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
b=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}}}{2\times 12}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b=\frac{-\left(-15\right)±15}{2\times 12}
Take the square root of \left(-15\right)^{2}.
b=\frac{15±15}{2\times 12}
The opposite of -15 is 15.
b=\frac{15±15}{24}
Multiply 2 times 12.
b=\frac{30}{24}
Now solve the equation b=\frac{15±15}{24} when ± is plus. Add 15 to 15.
b=\frac{5}{4}
Reduce the fraction \frac{30}{24} to lowest terms by extracting and canceling out 6.
b=\frac{0}{24}
Now solve the equation b=\frac{15±15}{24} when ± is minus. Subtract 15 from 15.
b=0
Divide 0 by 24.
12b^{2}-15b=12\left(b-\frac{5}{4}\right)b
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5}{4} for x_{1} and 0 for x_{2}.
12b^{2}-15b=12\times \frac{4b-5}{4}b
Subtract \frac{5}{4} from b by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
12b^{2}-15b=3\left(4b-5\right)b
Cancel out 4, the greatest common factor in 12 and 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}