Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\left(4b^{2}-5b\right)
Factor out 3.
b\left(4b-5\right)
Consider 4b^{2}-5b. Factor out b.
3b\left(4b-5\right)
Rewrite the complete factored expression.
12b^{2}-15b=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
b=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}}}{2\times 12}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b=\frac{-\left(-15\right)±15}{2\times 12}
Take the square root of \left(-15\right)^{2}.
b=\frac{15±15}{2\times 12}
The opposite of -15 is 15.
b=\frac{15±15}{24}
Multiply 2 times 12.
b=\frac{30}{24}
Now solve the equation b=\frac{15±15}{24} when ± is plus. Add 15 to 15.
b=\frac{5}{4}
Reduce the fraction \frac{30}{24} to lowest terms by extracting and canceling out 6.
b=\frac{0}{24}
Now solve the equation b=\frac{15±15}{24} when ± is minus. Subtract 15 from 15.
b=0
Divide 0 by 24.
12b^{2}-15b=12\left(b-\frac{5}{4}\right)b
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5}{4} for x_{1} and 0 for x_{2}.
12b^{2}-15b=12\times \frac{4b-5}{4}b
Subtract \frac{5}{4} from b by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
12b^{2}-15b=3\left(4b-5\right)b
Cancel out 4, the greatest common factor in 12 and 4.