Solve for a
a=\frac{5u}{6}+\frac{7}{12}
Solve for u
u=\frac{6a}{5}-\frac{7}{10}
Share
Copied to clipboard
12a-9+2=10u
Add 4 and 5 to get 9.
12a-7=10u
Add -9 and 2 to get -7.
12a=10u+7
Add 7 to both sides.
\frac{12a}{12}=\frac{10u+7}{12}
Divide both sides by 12.
a=\frac{10u+7}{12}
Dividing by 12 undoes the multiplication by 12.
a=\frac{5u}{6}+\frac{7}{12}
Divide 10u+7 by 12.
12a-9+2=10u
Add 4 and 5 to get 9.
12a-7=10u
Add -9 and 2 to get -7.
10u=12a-7
Swap sides so that all variable terms are on the left hand side.
\frac{10u}{10}=\frac{12a-7}{10}
Divide both sides by 10.
u=\frac{12a-7}{10}
Dividing by 10 undoes the multiplication by 10.
u=\frac{6a}{5}-\frac{7}{10}
Divide 12a-7 by 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}