Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2\left(6a^{3}+11a^{2}-35a\right)
Factor out 2.
a\left(6a^{2}+11a-35\right)
Consider 6a^{3}+11a^{2}-35a. Factor out a.
p+q=11 pq=6\left(-35\right)=-210
Consider 6a^{2}+11a-35. Factor the expression by grouping. First, the expression needs to be rewritten as 6a^{2}+pa+qa-35. To find p and q, set up a system to be solved.
-1,210 -2,105 -3,70 -5,42 -6,35 -7,30 -10,21 -14,15
Since pq is negative, p and q have the opposite signs. Since p+q is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -210.
-1+210=209 -2+105=103 -3+70=67 -5+42=37 -6+35=29 -7+30=23 -10+21=11 -14+15=1
Calculate the sum for each pair.
p=-10 q=21
The solution is the pair that gives sum 11.
\left(6a^{2}-10a\right)+\left(21a-35\right)
Rewrite 6a^{2}+11a-35 as \left(6a^{2}-10a\right)+\left(21a-35\right).
2a\left(3a-5\right)+7\left(3a-5\right)
Factor out 2a in the first and 7 in the second group.
\left(3a-5\right)\left(2a+7\right)
Factor out common term 3a-5 by using distributive property.
2a\left(3a-5\right)\left(2a+7\right)
Rewrite the complete factored expression.