Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2\left(6a^{3}+a^{2}-96a-16\right)
Factor out 2.
a^{2}\left(6a+1\right)-16\left(6a+1\right)
Consider 6a^{3}+a^{2}-96a-16. Do the grouping 6a^{3}+a^{2}-96a-16=\left(6a^{3}+a^{2}\right)+\left(-96a-16\right), and factor out a^{2} in the first and -16 in the second group.
\left(6a+1\right)\left(a^{2}-16\right)
Factor out common term 6a+1 by using distributive property.
\left(a-4\right)\left(a+4\right)
Consider a^{2}-16. Rewrite a^{2}-16 as a^{2}-4^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
2\left(6a+1\right)\left(a-4\right)\left(a+4\right)
Rewrite the complete factored expression.