Factor
\left(6a-7\right)\left(2a+5\right)
Evaluate
\left(6a-7\right)\left(2a+5\right)
Share
Copied to clipboard
12a^{2}+16a-35
Multiply and combine like terms.
p+q=16 pq=12\left(-35\right)=-420
Factor the expression by grouping. First, the expression needs to be rewritten as 12a^{2}+pa+qa-35. To find p and q, set up a system to be solved.
-1,420 -2,210 -3,140 -4,105 -5,84 -6,70 -7,60 -10,42 -12,35 -14,30 -15,28 -20,21
Since pq is negative, p and q have the opposite signs. Since p+q is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -420.
-1+420=419 -2+210=208 -3+140=137 -4+105=101 -5+84=79 -6+70=64 -7+60=53 -10+42=32 -12+35=23 -14+30=16 -15+28=13 -20+21=1
Calculate the sum for each pair.
p=-14 q=30
The solution is the pair that gives sum 16.
\left(12a^{2}-14a\right)+\left(30a-35\right)
Rewrite 12a^{2}+16a-35 as \left(12a^{2}-14a\right)+\left(30a-35\right).
2a\left(6a-7\right)+5\left(6a-7\right)
Factor out 2a in the first and 5 in the second group.
\left(6a-7\right)\left(2a+5\right)
Factor out common term 6a-7 by using distributive property.
12a^{2}+16a-35
Combine 30a and -14a to get 16a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}