Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\left(4a^{2}+a\right)
Factor out 3.
a\left(4a+1\right)
Consider 4a^{2}+a. Factor out a.
3a\left(4a+1\right)
Rewrite the complete factored expression.
12a^{2}+3a=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-3±\sqrt{3^{2}}}{2\times 12}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-3±3}{2\times 12}
Take the square root of 3^{2}.
a=\frac{-3±3}{24}
Multiply 2 times 12.
a=\frac{0}{24}
Now solve the equation a=\frac{-3±3}{24} when ± is plus. Add -3 to 3.
a=0
Divide 0 by 24.
a=-\frac{6}{24}
Now solve the equation a=\frac{-3±3}{24} when ± is minus. Subtract 3 from -3.
a=-\frac{1}{4}
Reduce the fraction \frac{-6}{24} to lowest terms by extracting and canceling out 6.
12a^{2}+3a=12a\left(a-\left(-\frac{1}{4}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{1}{4} for x_{2}.
12a^{2}+3a=12a\left(a+\frac{1}{4}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
12a^{2}+3a=12a\times \frac{4a+1}{4}
Add \frac{1}{4} to a by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
12a^{2}+3a=3a\left(4a+1\right)
Cancel out 4, the greatest common factor in 12 and 4.