Solve for a
a=\frac{\sqrt{17}-3}{4}\approx 0.280776406
a=\frac{-\sqrt{17}-3}{4}\approx -1.780776406
Share
Copied to clipboard
12a^{2}+18a=6
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
12a^{2}+18a-6=6-6
Subtract 6 from both sides of the equation.
12a^{2}+18a-6=0
Subtracting 6 from itself leaves 0.
a=\frac{-18±\sqrt{18^{2}-4\times 12\left(-6\right)}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, 18 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-18±\sqrt{324-4\times 12\left(-6\right)}}{2\times 12}
Square 18.
a=\frac{-18±\sqrt{324-48\left(-6\right)}}{2\times 12}
Multiply -4 times 12.
a=\frac{-18±\sqrt{324+288}}{2\times 12}
Multiply -48 times -6.
a=\frac{-18±\sqrt{612}}{2\times 12}
Add 324 to 288.
a=\frac{-18±6\sqrt{17}}{2\times 12}
Take the square root of 612.
a=\frac{-18±6\sqrt{17}}{24}
Multiply 2 times 12.
a=\frac{6\sqrt{17}-18}{24}
Now solve the equation a=\frac{-18±6\sqrt{17}}{24} when ± is plus. Add -18 to 6\sqrt{17}.
a=\frac{\sqrt{17}-3}{4}
Divide -18+6\sqrt{17} by 24.
a=\frac{-6\sqrt{17}-18}{24}
Now solve the equation a=\frac{-18±6\sqrt{17}}{24} when ± is minus. Subtract 6\sqrt{17} from -18.
a=\frac{-\sqrt{17}-3}{4}
Divide -18-6\sqrt{17} by 24.
a=\frac{\sqrt{17}-3}{4} a=\frac{-\sqrt{17}-3}{4}
The equation is now solved.
12a^{2}+18a=6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{12a^{2}+18a}{12}=\frac{6}{12}
Divide both sides by 12.
a^{2}+\frac{18}{12}a=\frac{6}{12}
Dividing by 12 undoes the multiplication by 12.
a^{2}+\frac{3}{2}a=\frac{6}{12}
Reduce the fraction \frac{18}{12} to lowest terms by extracting and canceling out 6.
a^{2}+\frac{3}{2}a=\frac{1}{2}
Reduce the fraction \frac{6}{12} to lowest terms by extracting and canceling out 6.
a^{2}+\frac{3}{2}a+\left(\frac{3}{4}\right)^{2}=\frac{1}{2}+\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+\frac{3}{2}a+\frac{9}{16}=\frac{1}{2}+\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
a^{2}+\frac{3}{2}a+\frac{9}{16}=\frac{17}{16}
Add \frac{1}{2} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a+\frac{3}{4}\right)^{2}=\frac{17}{16}
Factor a^{2}+\frac{3}{2}a+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{3}{4}\right)^{2}}=\sqrt{\frac{17}{16}}
Take the square root of both sides of the equation.
a+\frac{3}{4}=\frac{\sqrt{17}}{4} a+\frac{3}{4}=-\frac{\sqrt{17}}{4}
Simplify.
a=\frac{\sqrt{17}-3}{4} a=\frac{-\sqrt{17}-3}{4}
Subtract \frac{3}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}