Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

12a^{2}+15a-54=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-15±\sqrt{15^{2}-4\times 12\left(-54\right)}}{2\times 12}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-15±\sqrt{225-4\times 12\left(-54\right)}}{2\times 12}
Square 15.
a=\frac{-15±\sqrt{225-48\left(-54\right)}}{2\times 12}
Multiply -4 times 12.
a=\frac{-15±\sqrt{225+2592}}{2\times 12}
Multiply -48 times -54.
a=\frac{-15±\sqrt{2817}}{2\times 12}
Add 225 to 2592.
a=\frac{-15±3\sqrt{313}}{2\times 12}
Take the square root of 2817.
a=\frac{-15±3\sqrt{313}}{24}
Multiply 2 times 12.
a=\frac{3\sqrt{313}-15}{24}
Now solve the equation a=\frac{-15±3\sqrt{313}}{24} when ± is plus. Add -15 to 3\sqrt{313}.
a=\frac{\sqrt{313}-5}{8}
Divide -15+3\sqrt{313} by 24.
a=\frac{-3\sqrt{313}-15}{24}
Now solve the equation a=\frac{-15±3\sqrt{313}}{24} when ± is minus. Subtract 3\sqrt{313} from -15.
a=\frac{-\sqrt{313}-5}{8}
Divide -15-3\sqrt{313} by 24.
12a^{2}+15a-54=12\left(a-\frac{\sqrt{313}-5}{8}\right)\left(a-\frac{-\sqrt{313}-5}{8}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-5+\sqrt{313}}{8} for x_{1} and \frac{-5-\sqrt{313}}{8} for x_{2}.
x ^ 2 +\frac{5}{4}x -\frac{9}{2} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 12
r + s = -\frac{5}{4} rs = -\frac{9}{2}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{5}{8} - u s = -\frac{5}{8} + u
Two numbers r and s sum up to -\frac{5}{4} exactly when the average of the two numbers is \frac{1}{2}*-\frac{5}{4} = -\frac{5}{8}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{5}{8} - u) (-\frac{5}{8} + u) = -\frac{9}{2}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{9}{2}
\frac{25}{64} - u^2 = -\frac{9}{2}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{9}{2}-\frac{25}{64} = -\frac{313}{64}
Simplify the expression by subtracting \frac{25}{64} on both sides
u^2 = \frac{313}{64} u = \pm\sqrt{\frac{313}{64}} = \pm \frac{\sqrt{313}}{8}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{5}{8} - \frac{\sqrt{313}}{8} = -2.836 s = -\frac{5}{8} + \frac{\sqrt{313}}{8} = 1.586
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.