Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

24-2a=\sqrt{a^{2}+10}
Multiply both sides of the equation by 2.
24-2a-\sqrt{a^{2}+10}=0
Subtract \sqrt{a^{2}+10} from both sides.
-\sqrt{a^{2}+10}=-\left(24-2a\right)
Subtract 24-2a from both sides of the equation.
\sqrt{a^{2}+10}=24-2a
Cancel out -1 on both sides.
\left(\sqrt{a^{2}+10}\right)^{2}=\left(24-2a\right)^{2}
Square both sides of the equation.
a^{2}+10=\left(24-2a\right)^{2}
Calculate \sqrt{a^{2}+10} to the power of 2 and get a^{2}+10.
a^{2}+10=576-96a+4a^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(24-2a\right)^{2}.
a^{2}+10-576=-96a+4a^{2}
Subtract 576 from both sides.
a^{2}-566=-96a+4a^{2}
Subtract 576 from 10 to get -566.
a^{2}-566+96a=4a^{2}
Add 96a to both sides.
a^{2}-566+96a-4a^{2}=0
Subtract 4a^{2} from both sides.
-3a^{2}-566+96a=0
Combine a^{2} and -4a^{2} to get -3a^{2}.
-3a^{2}+96a-566=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-96±\sqrt{96^{2}-4\left(-3\right)\left(-566\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 96 for b, and -566 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-96±\sqrt{9216-4\left(-3\right)\left(-566\right)}}{2\left(-3\right)}
Square 96.
a=\frac{-96±\sqrt{9216+12\left(-566\right)}}{2\left(-3\right)}
Multiply -4 times -3.
a=\frac{-96±\sqrt{9216-6792}}{2\left(-3\right)}
Multiply 12 times -566.
a=\frac{-96±\sqrt{2424}}{2\left(-3\right)}
Add 9216 to -6792.
a=\frac{-96±2\sqrt{606}}{2\left(-3\right)}
Take the square root of 2424.
a=\frac{-96±2\sqrt{606}}{-6}
Multiply 2 times -3.
a=\frac{2\sqrt{606}-96}{-6}
Now solve the equation a=\frac{-96±2\sqrt{606}}{-6} when ± is plus. Add -96 to 2\sqrt{606}.
a=-\frac{\sqrt{606}}{3}+16
Divide -96+2\sqrt{606} by -6.
a=\frac{-2\sqrt{606}-96}{-6}
Now solve the equation a=\frac{-96±2\sqrt{606}}{-6} when ± is minus. Subtract 2\sqrt{606} from -96.
a=\frac{\sqrt{606}}{3}+16
Divide -96-2\sqrt{606} by -6.
a=-\frac{\sqrt{606}}{3}+16 a=\frac{\sqrt{606}}{3}+16
The equation is now solved.
12-\left(-\frac{\sqrt{606}}{3}+16\right)=\frac{\sqrt{\left(-\frac{\sqrt{606}}{3}+16\right)^{2}+10}}{2}
Substitute -\frac{\sqrt{606}}{3}+16 for a in the equation 12-a=\frac{\sqrt{a^{2}+10}}{2}.
-4+\frac{1}{3}\times 606^{\frac{1}{2}}=\frac{1}{3}\times 606^{\frac{1}{2}}-4
Simplify. The value a=-\frac{\sqrt{606}}{3}+16 satisfies the equation.
12-\left(\frac{\sqrt{606}}{3}+16\right)=\frac{\sqrt{\left(\frac{\sqrt{606}}{3}+16\right)^{2}+10}}{2}
Substitute \frac{\sqrt{606}}{3}+16 for a in the equation 12-a=\frac{\sqrt{a^{2}+10}}{2}.
-4-\frac{1}{3}\times 606^{\frac{1}{2}}=\frac{1}{3}\times 606^{\frac{1}{2}}+4
Simplify. The value a=\frac{\sqrt{606}}{3}+16 does not satisfy the equation because the left and the right hand side have opposite signs.
a=-\frac{\sqrt{606}}{3}+16
Equation \sqrt{a^{2}+10}=24-2a has a unique solution.