Factor
-\left(2x-3\right)\left(x+4\right)
Evaluate
-\left(2x-3\right)\left(x+4\right)
Graph
Share
Copied to clipboard
-2x^{2}-5x+12
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-5 ab=-2\times 12=-24
Factor the expression by grouping. First, the expression needs to be rewritten as -2x^{2}+ax+bx+12. To find a and b, set up a system to be solved.
1,-24 2,-12 3,-8 4,-6
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -24.
1-24=-23 2-12=-10 3-8=-5 4-6=-2
Calculate the sum for each pair.
a=3 b=-8
The solution is the pair that gives sum -5.
\left(-2x^{2}+3x\right)+\left(-8x+12\right)
Rewrite -2x^{2}-5x+12 as \left(-2x^{2}+3x\right)+\left(-8x+12\right).
-x\left(2x-3\right)-4\left(2x-3\right)
Factor out -x in the first and -4 in the second group.
\left(2x-3\right)\left(-x-4\right)
Factor out common term 2x-3 by using distributive property.
-2x^{2}-5x+12=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-2\right)\times 12}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-2\right)\times 12}}{2\left(-2\right)}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25+8\times 12}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-5\right)±\sqrt{25+96}}{2\left(-2\right)}
Multiply 8 times 12.
x=\frac{-\left(-5\right)±\sqrt{121}}{2\left(-2\right)}
Add 25 to 96.
x=\frac{-\left(-5\right)±11}{2\left(-2\right)}
Take the square root of 121.
x=\frac{5±11}{2\left(-2\right)}
The opposite of -5 is 5.
x=\frac{5±11}{-4}
Multiply 2 times -2.
x=\frac{16}{-4}
Now solve the equation x=\frac{5±11}{-4} when ± is plus. Add 5 to 11.
x=-4
Divide 16 by -4.
x=-\frac{6}{-4}
Now solve the equation x=\frac{5±11}{-4} when ± is minus. Subtract 11 from 5.
x=\frac{3}{2}
Reduce the fraction \frac{-6}{-4} to lowest terms by extracting and canceling out 2.
-2x^{2}-5x+12=-2\left(x-\left(-4\right)\right)\left(x-\frac{3}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -4 for x_{1} and \frac{3}{2} for x_{2}.
-2x^{2}-5x+12=-2\left(x+4\right)\left(x-\frac{3}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-2x^{2}-5x+12=-2\left(x+4\right)\times \frac{-2x+3}{-2}
Subtract \frac{3}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-2x^{2}-5x+12=\left(x+4\right)\left(-2x+3\right)
Cancel out 2, the greatest common factor in -2 and 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}