Solve for x
x\leq \frac{4}{3}
Graph
Share
Copied to clipboard
12-\frac{2^{15}x-2^{13}}{2^{12}}\geq 3x-2\left(3-2x\right)
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
12-\frac{32768x-2^{13}}{2^{12}}\geq 3x-2\left(3-2x\right)
Calculate 2 to the power of 15 and get 32768.
12-\frac{32768x-8192}{2^{12}}\geq 3x-2\left(3-2x\right)
Calculate 2 to the power of 13 and get 8192.
12-\frac{32768x-8192}{4096}\geq 3x-2\left(3-2x\right)
Calculate 2 to the power of 12 and get 4096.
12-\frac{32768x-8192}{4096}\geq 3x-6+4x
Use the distributive property to multiply -2 by 3-2x.
12-\frac{32768x-8192}{4096}\geq 7x-6
Combine 3x and 4x to get 7x.
12-\left(8x-2\right)\geq 7x-6
Divide each term of 32768x-8192 by 4096 to get 8x-2.
12-8x+2\geq 7x-6
To find the opposite of 8x-2, find the opposite of each term.
14-8x\geq 7x-6
Add 12 and 2 to get 14.
14-8x-7x\geq -6
Subtract 7x from both sides.
14-15x\geq -6
Combine -8x and -7x to get -15x.
-15x\geq -6-14
Subtract 14 from both sides.
-15x\geq -20
Subtract 14 from -6 to get -20.
x\leq \frac{-20}{-15}
Divide both sides by -15. Since -15 is negative, the inequality direction is changed.
x\leq \frac{4}{3}
Reduce the fraction \frac{-20}{-15} to lowest terms by extracting and canceling out -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}