Solve for b
b = -\frac{72}{7} = -10\frac{2}{7} \approx -10.285714286
Share
Copied to clipboard
12-\frac{4}{3}-\left(-\frac{7}{9}b\right)=\frac{8}{3}
To find the opposite of \frac{4}{3}-\frac{7}{9}b, find the opposite of each term.
12-\frac{4}{3}+\frac{7}{9}b=\frac{8}{3}
The opposite of -\frac{7}{9}b is \frac{7}{9}b.
\frac{36}{3}-\frac{4}{3}+\frac{7}{9}b=\frac{8}{3}
Convert 12 to fraction \frac{36}{3}.
\frac{36-4}{3}+\frac{7}{9}b=\frac{8}{3}
Since \frac{36}{3} and \frac{4}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{32}{3}+\frac{7}{9}b=\frac{8}{3}
Subtract 4 from 36 to get 32.
\frac{7}{9}b=\frac{8}{3}-\frac{32}{3}
Subtract \frac{32}{3} from both sides.
\frac{7}{9}b=\frac{8-32}{3}
Since \frac{8}{3} and \frac{32}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{9}b=\frac{-24}{3}
Subtract 32 from 8 to get -24.
\frac{7}{9}b=-8
Divide -24 by 3 to get -8.
b=-8\times \frac{9}{7}
Multiply both sides by \frac{9}{7}, the reciprocal of \frac{7}{9}.
b=\frac{-8\times 9}{7}
Express -8\times \frac{9}{7} as a single fraction.
b=\frac{-72}{7}
Multiply -8 and 9 to get -72.
b=-\frac{72}{7}
Fraction \frac{-72}{7} can be rewritten as -\frac{72}{7} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}