Solve for x
x = \frac{253}{48} = 5\frac{13}{48} \approx 5.270833333
Graph
Share
Copied to clipboard
288-6\left(x+2\right)=3\left(5-10x\right)+8\left(9x+1\right)
Multiply both sides of the equation by 24, the least common multiple of 4,8,3.
288-6x-12=3\left(5-10x\right)+8\left(9x+1\right)
Use the distributive property to multiply -6 by x+2.
276-6x=3\left(5-10x\right)+8\left(9x+1\right)
Subtract 12 from 288 to get 276.
276-6x=15-30x+8\left(9x+1\right)
Use the distributive property to multiply 3 by 5-10x.
276-6x=15-30x+72x+8
Use the distributive property to multiply 8 by 9x+1.
276-6x=15+42x+8
Combine -30x and 72x to get 42x.
276-6x=23+42x
Add 15 and 8 to get 23.
276-6x-42x=23
Subtract 42x from both sides.
276-48x=23
Combine -6x and -42x to get -48x.
-48x=23-276
Subtract 276 from both sides.
-48x=-253
Subtract 276 from 23 to get -253.
x=\frac{-253}{-48}
Divide both sides by -48.
x=\frac{253}{48}
Fraction \frac{-253}{-48} can be simplified to \frac{253}{48} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}