Solve for x
x\geq -3
Graph
Share
Copied to clipboard
12-\frac{4}{5}\times 5x-\frac{4}{5}\left(-15\right)\leq \frac{4}{7}\left(14x+105\right)
Use the distributive property to multiply -\frac{4}{5} by 5x-15.
12-4x-\frac{4}{5}\left(-15\right)\leq \frac{4}{7}\left(14x+105\right)
Cancel out 5 and 5.
12-4x+\frac{-4\left(-15\right)}{5}\leq \frac{4}{7}\left(14x+105\right)
Express -\frac{4}{5}\left(-15\right) as a single fraction.
12-4x+\frac{60}{5}\leq \frac{4}{7}\left(14x+105\right)
Multiply -4 and -15 to get 60.
12-4x+12\leq \frac{4}{7}\left(14x+105\right)
Divide 60 by 5 to get 12.
24-4x\leq \frac{4}{7}\left(14x+105\right)
Add 12 and 12 to get 24.
24-4x\leq \frac{4}{7}\times 14x+\frac{4}{7}\times 105
Use the distributive property to multiply \frac{4}{7} by 14x+105.
24-4x\leq \frac{4\times 14}{7}x+\frac{4}{7}\times 105
Express \frac{4}{7}\times 14 as a single fraction.
24-4x\leq \frac{56}{7}x+\frac{4}{7}\times 105
Multiply 4 and 14 to get 56.
24-4x\leq 8x+\frac{4}{7}\times 105
Divide 56 by 7 to get 8.
24-4x\leq 8x+\frac{4\times 105}{7}
Express \frac{4}{7}\times 105 as a single fraction.
24-4x\leq 8x+\frac{420}{7}
Multiply 4 and 105 to get 420.
24-4x\leq 8x+60
Divide 420 by 7 to get 60.
24-4x-8x\leq 60
Subtract 8x from both sides.
24-12x\leq 60
Combine -4x and -8x to get -12x.
-12x\leq 60-24
Subtract 24 from both sides.
-12x\leq 36
Subtract 24 from 60 to get 36.
x\geq \frac{36}{-12}
Divide both sides by -12. Since -12 is negative, the inequality direction is changed.
x\geq -3
Divide 36 by -12 to get -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}