Evaluate
2y\left(y+2\right)\left(y+5\right)+5
Expand
2y^{3}+14y^{2}+20y+5
Graph
Share
Copied to clipboard
\frac{12y^{2}+84y+120}{6}y+5
Use the distributive property to multiply 12 by y^{2}+7y+10.
\frac{\left(12y^{2}+84y+120\right)y}{6}+5
Express \frac{12y^{2}+84y+120}{6}y as a single fraction.
\frac{\left(12y^{2}+84y+120\right)y}{6}+\frac{5\times 6}{6}
To add or subtract expressions, expand them to make their denominators the same. Multiply 5 times \frac{6}{6}.
\frac{\left(12y^{2}+84y+120\right)y+5\times 6}{6}
Since \frac{\left(12y^{2}+84y+120\right)y}{6} and \frac{5\times 6}{6} have the same denominator, add them by adding their numerators.
\frac{12y^{3}+84y^{2}+120y+30}{6}
Do the multiplications in \left(12y^{2}+84y+120\right)y+5\times 6.
2y^{3}+14y^{2}+20y+5
Divide each term of 12y^{3}+84y^{2}+120y+30 by 6 to get 2y^{3}+14y^{2}+20y+5.
\frac{12y^{2}+84y+120}{6}y+5
Use the distributive property to multiply 12 by y^{2}+7y+10.
\frac{\left(12y^{2}+84y+120\right)y}{6}+5
Express \frac{12y^{2}+84y+120}{6}y as a single fraction.
\frac{\left(12y^{2}+84y+120\right)y}{6}+\frac{5\times 6}{6}
To add or subtract expressions, expand them to make their denominators the same. Multiply 5 times \frac{6}{6}.
\frac{\left(12y^{2}+84y+120\right)y+5\times 6}{6}
Since \frac{\left(12y^{2}+84y+120\right)y}{6} and \frac{5\times 6}{6} have the same denominator, add them by adding their numerators.
\frac{12y^{3}+84y^{2}+120y+30}{6}
Do the multiplications in \left(12y^{2}+84y+120\right)y+5\times 6.
2y^{3}+14y^{2}+20y+5
Divide each term of 12y^{3}+84y^{2}+120y+30 by 6 to get 2y^{3}+14y^{2}+20y+5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}