Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{12\left(x-2\right)^{2}}{12}=\frac{9}{12}
Divide both sides by 12.
\left(x-2\right)^{2}=\frac{9}{12}
Dividing by 12 undoes the multiplication by 12.
\left(x-2\right)^{2}=\frac{3}{4}
Reduce the fraction \frac{9}{12} to lowest terms by extracting and canceling out 3.
x-2=\frac{\sqrt{3}}{2} x-2=-\frac{\sqrt{3}}{2}
Take the square root of both sides of the equation.
x-2-\left(-2\right)=\frac{\sqrt{3}}{2}-\left(-2\right) x-2-\left(-2\right)=-\frac{\sqrt{3}}{2}-\left(-2\right)
Add 2 to both sides of the equation.
x=\frac{\sqrt{3}}{2}-\left(-2\right) x=-\frac{\sqrt{3}}{2}-\left(-2\right)
Subtracting -2 from itself leaves 0.
x=\frac{\sqrt{3}}{2}+2
Subtract -2 from \frac{\sqrt{3}}{2}.
x=-\frac{\sqrt{3}}{2}+2
Subtract -2 from -\frac{\sqrt{3}}{2}.
x=\frac{\sqrt{3}}{2}+2 x=-\frac{\sqrt{3}}{2}+2
The equation is now solved.