Solve for n
n=6
n=15
Share
Copied to clipboard
12n-48-30=n^{2}-9n+12
Use the distributive property to multiply 12 by n-4.
12n-78=n^{2}-9n+12
Subtract 30 from -48 to get -78.
12n-78-n^{2}=-9n+12
Subtract n^{2} from both sides.
12n-78-n^{2}+9n=12
Add 9n to both sides.
21n-78-n^{2}=12
Combine 12n and 9n to get 21n.
21n-78-n^{2}-12=0
Subtract 12 from both sides.
21n-90-n^{2}=0
Subtract 12 from -78 to get -90.
-n^{2}+21n-90=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=21 ab=-\left(-90\right)=90
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -n^{2}+an+bn-90. To find a and b, set up a system to be solved.
1,90 2,45 3,30 5,18 6,15 9,10
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 90.
1+90=91 2+45=47 3+30=33 5+18=23 6+15=21 9+10=19
Calculate the sum for each pair.
a=15 b=6
The solution is the pair that gives sum 21.
\left(-n^{2}+15n\right)+\left(6n-90\right)
Rewrite -n^{2}+21n-90 as \left(-n^{2}+15n\right)+\left(6n-90\right).
-n\left(n-15\right)+6\left(n-15\right)
Factor out -n in the first and 6 in the second group.
\left(n-15\right)\left(-n+6\right)
Factor out common term n-15 by using distributive property.
n=15 n=6
To find equation solutions, solve n-15=0 and -n+6=0.
12n-48-30=n^{2}-9n+12
Use the distributive property to multiply 12 by n-4.
12n-78=n^{2}-9n+12
Subtract 30 from -48 to get -78.
12n-78-n^{2}=-9n+12
Subtract n^{2} from both sides.
12n-78-n^{2}+9n=12
Add 9n to both sides.
21n-78-n^{2}=12
Combine 12n and 9n to get 21n.
21n-78-n^{2}-12=0
Subtract 12 from both sides.
21n-90-n^{2}=0
Subtract 12 from -78 to get -90.
-n^{2}+21n-90=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-21±\sqrt{21^{2}-4\left(-1\right)\left(-90\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 21 for b, and -90 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-21±\sqrt{441-4\left(-1\right)\left(-90\right)}}{2\left(-1\right)}
Square 21.
n=\frac{-21±\sqrt{441+4\left(-90\right)}}{2\left(-1\right)}
Multiply -4 times -1.
n=\frac{-21±\sqrt{441-360}}{2\left(-1\right)}
Multiply 4 times -90.
n=\frac{-21±\sqrt{81}}{2\left(-1\right)}
Add 441 to -360.
n=\frac{-21±9}{2\left(-1\right)}
Take the square root of 81.
n=\frac{-21±9}{-2}
Multiply 2 times -1.
n=-\frac{12}{-2}
Now solve the equation n=\frac{-21±9}{-2} when ± is plus. Add -21 to 9.
n=6
Divide -12 by -2.
n=-\frac{30}{-2}
Now solve the equation n=\frac{-21±9}{-2} when ± is minus. Subtract 9 from -21.
n=15
Divide -30 by -2.
n=6 n=15
The equation is now solved.
12n-48-30=n^{2}-9n+12
Use the distributive property to multiply 12 by n-4.
12n-78=n^{2}-9n+12
Subtract 30 from -48 to get -78.
12n-78-n^{2}=-9n+12
Subtract n^{2} from both sides.
12n-78-n^{2}+9n=12
Add 9n to both sides.
21n-78-n^{2}=12
Combine 12n and 9n to get 21n.
21n-n^{2}=12+78
Add 78 to both sides.
21n-n^{2}=90
Add 12 and 78 to get 90.
-n^{2}+21n=90
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-n^{2}+21n}{-1}=\frac{90}{-1}
Divide both sides by -1.
n^{2}+\frac{21}{-1}n=\frac{90}{-1}
Dividing by -1 undoes the multiplication by -1.
n^{2}-21n=\frac{90}{-1}
Divide 21 by -1.
n^{2}-21n=-90
Divide 90 by -1.
n^{2}-21n+\left(-\frac{21}{2}\right)^{2}=-90+\left(-\frac{21}{2}\right)^{2}
Divide -21, the coefficient of the x term, by 2 to get -\frac{21}{2}. Then add the square of -\frac{21}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-21n+\frac{441}{4}=-90+\frac{441}{4}
Square -\frac{21}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}-21n+\frac{441}{4}=\frac{81}{4}
Add -90 to \frac{441}{4}.
\left(n-\frac{21}{2}\right)^{2}=\frac{81}{4}
Factor n^{2}-21n+\frac{441}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{21}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Take the square root of both sides of the equation.
n-\frac{21}{2}=\frac{9}{2} n-\frac{21}{2}=-\frac{9}{2}
Simplify.
n=15 n=6
Add \frac{21}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}