Solve for x
x=-\frac{\sqrt{3}}{2}+2\approx 1.133974596
x=\frac{\sqrt{3}}{2}+2\approx 2.866025404
Graph
Share
Copied to clipboard
12\left(-x+2\right)^{2}-9+9=9
Add 9 to both sides of the equation.
12\left(-x+2\right)^{2}=9
Subtracting 9 from itself leaves 0.
\frac{12\left(-x+2\right)^{2}}{12}=\frac{9}{12}
Divide both sides by 12.
\left(-x+2\right)^{2}=\frac{9}{12}
Dividing by 12 undoes the multiplication by 12.
\left(-x+2\right)^{2}=\frac{3}{4}
Reduce the fraction \frac{9}{12} to lowest terms by extracting and canceling out 3.
-x+2=\frac{\sqrt{3}}{2} -x+2=-\frac{\sqrt{3}}{2}
Take the square root of both sides of the equation.
-x+2-2=\frac{\sqrt{3}}{2}-2 -x+2-2=-\frac{\sqrt{3}}{2}-2
Subtract 2 from both sides of the equation.
-x=\frac{\sqrt{3}}{2}-2 -x=-\frac{\sqrt{3}}{2}-2
Subtracting 2 from itself leaves 0.
-x=\frac{\sqrt{3}}{2}-2
Subtract 2 from \frac{\sqrt{3}}{2}.
-x=-\frac{\sqrt{3}}{2}-2
Subtract 2 from -\frac{\sqrt{3}}{2}.
\frac{-x}{-1}=\frac{\frac{\sqrt{3}}{2}-2}{-1} \frac{-x}{-1}=\frac{-\frac{\sqrt{3}}{2}-2}{-1}
Divide both sides by -1.
x=\frac{\frac{\sqrt{3}}{2}-2}{-1} x=\frac{-\frac{\sqrt{3}}{2}-2}{-1}
Dividing by -1 undoes the multiplication by -1.
x=-\frac{\sqrt{3}}{2}+2
Divide \frac{\sqrt{3}}{2}-2 by -1.
x=\frac{\sqrt{3}}{2}+2
Divide -\frac{\sqrt{3}}{2}-2 by -1.
x=-\frac{\sqrt{3}}{2}+2 x=\frac{\sqrt{3}}{2}+2
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}