Evaluate
\frac{8}{9}\approx 0.888888889
Factor
\frac{2 ^ {3}}{3 ^ {2}} = 0.8888888888888888
Share
Copied to clipboard
12\left(\frac{2}{6}-\frac{3}{6}\right)\left(\frac{1}{18}-\frac{1}{2}\right)
Least common multiple of 3 and 2 is 6. Convert \frac{1}{3} and \frac{1}{2} to fractions with denominator 6.
12\times \frac{2-3}{6}\left(\frac{1}{18}-\frac{1}{2}\right)
Since \frac{2}{6} and \frac{3}{6} have the same denominator, subtract them by subtracting their numerators.
12\left(-\frac{1}{6}\right)\left(\frac{1}{18}-\frac{1}{2}\right)
Subtract 3 from 2 to get -1.
\frac{12\left(-1\right)}{6}\left(\frac{1}{18}-\frac{1}{2}\right)
Express 12\left(-\frac{1}{6}\right) as a single fraction.
\frac{-12}{6}\left(\frac{1}{18}-\frac{1}{2}\right)
Multiply 12 and -1 to get -12.
-2\left(\frac{1}{18}-\frac{1}{2}\right)
Divide -12 by 6 to get -2.
-2\left(\frac{1}{18}-\frac{9}{18}\right)
Least common multiple of 18 and 2 is 18. Convert \frac{1}{18} and \frac{1}{2} to fractions with denominator 18.
-2\times \frac{1-9}{18}
Since \frac{1}{18} and \frac{9}{18} have the same denominator, subtract them by subtracting their numerators.
-2\times \frac{-8}{18}
Subtract 9 from 1 to get -8.
-2\left(-\frac{4}{9}\right)
Reduce the fraction \frac{-8}{18} to lowest terms by extracting and canceling out 2.
\frac{-2\left(-4\right)}{9}
Express -2\left(-\frac{4}{9}\right) as a single fraction.
\frac{8}{9}
Multiply -2 and -4 to get 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}