Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

12x^{2}-88x+400=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-88\right)±\sqrt{\left(-88\right)^{2}-4\times 12\times 400}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, -88 for b, and 400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-88\right)±\sqrt{7744-4\times 12\times 400}}{2\times 12}
Square -88.
x=\frac{-\left(-88\right)±\sqrt{7744-48\times 400}}{2\times 12}
Multiply -4 times 12.
x=\frac{-\left(-88\right)±\sqrt{7744-19200}}{2\times 12}
Multiply -48 times 400.
x=\frac{-\left(-88\right)±\sqrt{-11456}}{2\times 12}
Add 7744 to -19200.
x=\frac{-\left(-88\right)±8\sqrt{179}i}{2\times 12}
Take the square root of -11456.
x=\frac{88±8\sqrt{179}i}{2\times 12}
The opposite of -88 is 88.
x=\frac{88±8\sqrt{179}i}{24}
Multiply 2 times 12.
x=\frac{88+8\sqrt{179}i}{24}
Now solve the equation x=\frac{88±8\sqrt{179}i}{24} when ± is plus. Add 88 to 8i\sqrt{179}.
x=\frac{11+\sqrt{179}i}{3}
Divide 88+8i\sqrt{179} by 24.
x=\frac{-8\sqrt{179}i+88}{24}
Now solve the equation x=\frac{88±8\sqrt{179}i}{24} when ± is minus. Subtract 8i\sqrt{179} from 88.
x=\frac{-\sqrt{179}i+11}{3}
Divide 88-8i\sqrt{179} by 24.
x=\frac{11+\sqrt{179}i}{3} x=\frac{-\sqrt{179}i+11}{3}
The equation is now solved.
12x^{2}-88x+400=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
12x^{2}-88x+400-400=-400
Subtract 400 from both sides of the equation.
12x^{2}-88x=-400
Subtracting 400 from itself leaves 0.
\frac{12x^{2}-88x}{12}=-\frac{400}{12}
Divide both sides by 12.
x^{2}+\left(-\frac{88}{12}\right)x=-\frac{400}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}-\frac{22}{3}x=-\frac{400}{12}
Reduce the fraction \frac{-88}{12} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{22}{3}x=-\frac{100}{3}
Reduce the fraction \frac{-400}{12} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{22}{3}x+\left(-\frac{11}{3}\right)^{2}=-\frac{100}{3}+\left(-\frac{11}{3}\right)^{2}
Divide -\frac{22}{3}, the coefficient of the x term, by 2 to get -\frac{11}{3}. Then add the square of -\frac{11}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{22}{3}x+\frac{121}{9}=-\frac{100}{3}+\frac{121}{9}
Square -\frac{11}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{22}{3}x+\frac{121}{9}=-\frac{179}{9}
Add -\frac{100}{3} to \frac{121}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{11}{3}\right)^{2}=-\frac{179}{9}
Factor x^{2}-\frac{22}{3}x+\frac{121}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{3}\right)^{2}}=\sqrt{-\frac{179}{9}}
Take the square root of both sides of the equation.
x-\frac{11}{3}=\frac{\sqrt{179}i}{3} x-\frac{11}{3}=-\frac{\sqrt{179}i}{3}
Simplify.
x=\frac{11+\sqrt{179}i}{3} x=\frac{-\sqrt{179}i+11}{3}
Add \frac{11}{3} to both sides of the equation.