Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

6\left(2x^{2}-x+1\right)
Factor out 6. Polynomial 2x^{2}-x+1 is not factored since it does not have any rational roots.
12x^{2}-6x+6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 12\times 6}}{2\times 12}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 12\times 6}}{2\times 12}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-48\times 6}}{2\times 12}
Multiply -4 times 12.
x=\frac{-\left(-6\right)±\sqrt{36-288}}{2\times 12}
Multiply -48 times 6.
x=\frac{-\left(-6\right)±\sqrt{-252}}{2\times 12}
Add 36 to -288.
12x^{2}-6x+6
Since the square root of a negative number is not defined in the real field, there are no solutions. Quadratic polynomial cannot be factored.