Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

12x^{2}=4
Add 4 to both sides. Anything plus zero gives itself.
x^{2}=\frac{4}{12}
Divide both sides by 12.
x^{2}=\frac{1}{3}
Reduce the fraction \frac{4}{12} to lowest terms by extracting and canceling out 4.
x=\frac{\sqrt{3}}{3} x=-\frac{\sqrt{3}}{3}
Take the square root of both sides of the equation.
12x^{2}-4=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 12\left(-4\right)}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, 0 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 12\left(-4\right)}}{2\times 12}
Square 0.
x=\frac{0±\sqrt{-48\left(-4\right)}}{2\times 12}
Multiply -4 times 12.
x=\frac{0±\sqrt{192}}{2\times 12}
Multiply -48 times -4.
x=\frac{0±8\sqrt{3}}{2\times 12}
Take the square root of 192.
x=\frac{0±8\sqrt{3}}{24}
Multiply 2 times 12.
x=\frac{\sqrt{3}}{3}
Now solve the equation x=\frac{0±8\sqrt{3}}{24} when ± is plus.
x=-\frac{\sqrt{3}}{3}
Now solve the equation x=\frac{0±8\sqrt{3}}{24} when ± is minus.
x=\frac{\sqrt{3}}{3} x=-\frac{\sqrt{3}}{3}
The equation is now solved.