Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-19 ab=12\times 5=60
Factor the expression by grouping. First, the expression needs to be rewritten as 12x^{2}+ax+bx+5. To find a and b, set up a system to be solved.
-1,-60 -2,-30 -3,-20 -4,-15 -5,-12 -6,-10
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 60.
-1-60=-61 -2-30=-32 -3-20=-23 -4-15=-19 -5-12=-17 -6-10=-16
Calculate the sum for each pair.
a=-15 b=-4
The solution is the pair that gives sum -19.
\left(12x^{2}-15x\right)+\left(-4x+5\right)
Rewrite 12x^{2}-19x+5 as \left(12x^{2}-15x\right)+\left(-4x+5\right).
3x\left(4x-5\right)-\left(4x-5\right)
Factor out 3x in the first and -1 in the second group.
\left(4x-5\right)\left(3x-1\right)
Factor out common term 4x-5 by using distributive property.
12x^{2}-19x+5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 12\times 5}}{2\times 12}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-19\right)±\sqrt{361-4\times 12\times 5}}{2\times 12}
Square -19.
x=\frac{-\left(-19\right)±\sqrt{361-48\times 5}}{2\times 12}
Multiply -4 times 12.
x=\frac{-\left(-19\right)±\sqrt{361-240}}{2\times 12}
Multiply -48 times 5.
x=\frac{-\left(-19\right)±\sqrt{121}}{2\times 12}
Add 361 to -240.
x=\frac{-\left(-19\right)±11}{2\times 12}
Take the square root of 121.
x=\frac{19±11}{2\times 12}
The opposite of -19 is 19.
x=\frac{19±11}{24}
Multiply 2 times 12.
x=\frac{30}{24}
Now solve the equation x=\frac{19±11}{24} when ± is plus. Add 19 to 11.
x=\frac{5}{4}
Reduce the fraction \frac{30}{24} to lowest terms by extracting and canceling out 6.
x=\frac{8}{24}
Now solve the equation x=\frac{19±11}{24} when ± is minus. Subtract 11 from 19.
x=\frac{1}{3}
Reduce the fraction \frac{8}{24} to lowest terms by extracting and canceling out 8.
12x^{2}-19x+5=12\left(x-\frac{5}{4}\right)\left(x-\frac{1}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5}{4} for x_{1} and \frac{1}{3} for x_{2}.
12x^{2}-19x+5=12\times \frac{4x-5}{4}\left(x-\frac{1}{3}\right)
Subtract \frac{5}{4} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
12x^{2}-19x+5=12\times \frac{4x-5}{4}\times \frac{3x-1}{3}
Subtract \frac{1}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
12x^{2}-19x+5=12\times \frac{\left(4x-5\right)\left(3x-1\right)}{4\times 3}
Multiply \frac{4x-5}{4} times \frac{3x-1}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
12x^{2}-19x+5=12\times \frac{\left(4x-5\right)\left(3x-1\right)}{12}
Multiply 4 times 3.
12x^{2}-19x+5=\left(4x-5\right)\left(3x-1\right)
Cancel out 12, the greatest common factor in 12 and 12.