Solve for x
x = \frac{10}{3} = 3\frac{1}{3} \approx 3.333333333
x=10
Graph
Share
Copied to clipboard
12x^{2}-160x+400=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-160\right)±\sqrt{\left(-160\right)^{2}-4\times 12\times 400}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, -160 for b, and 400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-160\right)±\sqrt{25600-4\times 12\times 400}}{2\times 12}
Square -160.
x=\frac{-\left(-160\right)±\sqrt{25600-48\times 400}}{2\times 12}
Multiply -4 times 12.
x=\frac{-\left(-160\right)±\sqrt{25600-19200}}{2\times 12}
Multiply -48 times 400.
x=\frac{-\left(-160\right)±\sqrt{6400}}{2\times 12}
Add 25600 to -19200.
x=\frac{-\left(-160\right)±80}{2\times 12}
Take the square root of 6400.
x=\frac{160±80}{2\times 12}
The opposite of -160 is 160.
x=\frac{160±80}{24}
Multiply 2 times 12.
x=\frac{240}{24}
Now solve the equation x=\frac{160±80}{24} when ± is plus. Add 160 to 80.
x=10
Divide 240 by 24.
x=\frac{80}{24}
Now solve the equation x=\frac{160±80}{24} when ± is minus. Subtract 80 from 160.
x=\frac{10}{3}
Reduce the fraction \frac{80}{24} to lowest terms by extracting and canceling out 8.
x=10 x=\frac{10}{3}
The equation is now solved.
12x^{2}-160x+400=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
12x^{2}-160x+400-400=-400
Subtract 400 from both sides of the equation.
12x^{2}-160x=-400
Subtracting 400 from itself leaves 0.
\frac{12x^{2}-160x}{12}=-\frac{400}{12}
Divide both sides by 12.
x^{2}+\left(-\frac{160}{12}\right)x=-\frac{400}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}-\frac{40}{3}x=-\frac{400}{12}
Reduce the fraction \frac{-160}{12} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{40}{3}x=-\frac{100}{3}
Reduce the fraction \frac{-400}{12} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{40}{3}x+\left(-\frac{20}{3}\right)^{2}=-\frac{100}{3}+\left(-\frac{20}{3}\right)^{2}
Divide -\frac{40}{3}, the coefficient of the x term, by 2 to get -\frac{20}{3}. Then add the square of -\frac{20}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{40}{3}x+\frac{400}{9}=-\frac{100}{3}+\frac{400}{9}
Square -\frac{20}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{40}{3}x+\frac{400}{9}=\frac{100}{9}
Add -\frac{100}{3} to \frac{400}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{20}{3}\right)^{2}=\frac{100}{9}
Factor x^{2}-\frac{40}{3}x+\frac{400}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{20}{3}\right)^{2}}=\sqrt{\frac{100}{9}}
Take the square root of both sides of the equation.
x-\frac{20}{3}=\frac{10}{3} x-\frac{20}{3}=-\frac{10}{3}
Simplify.
x=10 x=\frac{10}{3}
Add \frac{20}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}