Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

12x^{2}+9x-6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-9±\sqrt{9^{2}-4\times 12\left(-6\right)}}{2\times 12}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-9±\sqrt{81-4\times 12\left(-6\right)}}{2\times 12}
Square 9.
x=\frac{-9±\sqrt{81-48\left(-6\right)}}{2\times 12}
Multiply -4 times 12.
x=\frac{-9±\sqrt{81+288}}{2\times 12}
Multiply -48 times -6.
x=\frac{-9±\sqrt{369}}{2\times 12}
Add 81 to 288.
x=\frac{-9±3\sqrt{41}}{2\times 12}
Take the square root of 369.
x=\frac{-9±3\sqrt{41}}{24}
Multiply 2 times 12.
x=\frac{3\sqrt{41}-9}{24}
Now solve the equation x=\frac{-9±3\sqrt{41}}{24} when ± is plus. Add -9 to 3\sqrt{41}.
x=\frac{\sqrt{41}-3}{8}
Divide -9+3\sqrt{41} by 24.
x=\frac{-3\sqrt{41}-9}{24}
Now solve the equation x=\frac{-9±3\sqrt{41}}{24} when ± is minus. Subtract 3\sqrt{41} from -9.
x=\frac{-\sqrt{41}-3}{8}
Divide -9-3\sqrt{41} by 24.
12x^{2}+9x-6=12\left(x-\frac{\sqrt{41}-3}{8}\right)\left(x-\frac{-\sqrt{41}-3}{8}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-3+\sqrt{41}}{8} for x_{1} and \frac{-3-\sqrt{41}}{8} for x_{2}.