Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

12x^{2}+9+6x=0
Add 6x to both sides.
12x^{2}+6x+9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{6^{2}-4\times 12\times 9}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, 6 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 12\times 9}}{2\times 12}
Square 6.
x=\frac{-6±\sqrt{36-48\times 9}}{2\times 12}
Multiply -4 times 12.
x=\frac{-6±\sqrt{36-432}}{2\times 12}
Multiply -48 times 9.
x=\frac{-6±\sqrt{-396}}{2\times 12}
Add 36 to -432.
x=\frac{-6±6\sqrt{11}i}{2\times 12}
Take the square root of -396.
x=\frac{-6±6\sqrt{11}i}{24}
Multiply 2 times 12.
x=\frac{-6+6\sqrt{11}i}{24}
Now solve the equation x=\frac{-6±6\sqrt{11}i}{24} when ± is plus. Add -6 to 6i\sqrt{11}.
x=\frac{-1+\sqrt{11}i}{4}
Divide -6+6i\sqrt{11} by 24.
x=\frac{-6\sqrt{11}i-6}{24}
Now solve the equation x=\frac{-6±6\sqrt{11}i}{24} when ± is minus. Subtract 6i\sqrt{11} from -6.
x=\frac{-\sqrt{11}i-1}{4}
Divide -6-6i\sqrt{11} by 24.
x=\frac{-1+\sqrt{11}i}{4} x=\frac{-\sqrt{11}i-1}{4}
The equation is now solved.
12x^{2}+9+6x=0
Add 6x to both sides.
12x^{2}+6x=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
\frac{12x^{2}+6x}{12}=-\frac{9}{12}
Divide both sides by 12.
x^{2}+\frac{6}{12}x=-\frac{9}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}+\frac{1}{2}x=-\frac{9}{12}
Reduce the fraction \frac{6}{12} to lowest terms by extracting and canceling out 6.
x^{2}+\frac{1}{2}x=-\frac{3}{4}
Reduce the fraction \frac{-9}{12} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=-\frac{3}{4}+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{2}x+\frac{1}{16}=-\frac{3}{4}+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{2}x+\frac{1}{16}=-\frac{11}{16}
Add -\frac{3}{4} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{4}\right)^{2}=-\frac{11}{16}
Factor x^{2}+\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{-\frac{11}{16}}
Take the square root of both sides of the equation.
x+\frac{1}{4}=\frac{\sqrt{11}i}{4} x+\frac{1}{4}=-\frac{\sqrt{11}i}{4}
Simplify.
x=\frac{-1+\sqrt{11}i}{4} x=\frac{-\sqrt{11}i-1}{4}
Subtract \frac{1}{4} from both sides of the equation.