Solve for x
x = \frac{\sqrt{541} - 1}{10} \approx 2.22594067
x=\frac{-\sqrt{541}-1}{10}\approx -2.42594067
Graph
Share
Copied to clipboard
12x^{2}+3x+3x^{2}+9=90
Use the distributive property to multiply 3x by 1+x.
15x^{2}+3x+9=90
Combine 12x^{2} and 3x^{2} to get 15x^{2}.
15x^{2}+3x+9-90=0
Subtract 90 from both sides.
15x^{2}+3x-81=0
Subtract 90 from 9 to get -81.
x=\frac{-3±\sqrt{3^{2}-4\times 15\left(-81\right)}}{2\times 15}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 15 for a, 3 for b, and -81 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 15\left(-81\right)}}{2\times 15}
Square 3.
x=\frac{-3±\sqrt{9-60\left(-81\right)}}{2\times 15}
Multiply -4 times 15.
x=\frac{-3±\sqrt{9+4860}}{2\times 15}
Multiply -60 times -81.
x=\frac{-3±\sqrt{4869}}{2\times 15}
Add 9 to 4860.
x=\frac{-3±3\sqrt{541}}{2\times 15}
Take the square root of 4869.
x=\frac{-3±3\sqrt{541}}{30}
Multiply 2 times 15.
x=\frac{3\sqrt{541}-3}{30}
Now solve the equation x=\frac{-3±3\sqrt{541}}{30} when ± is plus. Add -3 to 3\sqrt{541}.
x=\frac{\sqrt{541}-1}{10}
Divide -3+3\sqrt{541} by 30.
x=\frac{-3\sqrt{541}-3}{30}
Now solve the equation x=\frac{-3±3\sqrt{541}}{30} when ± is minus. Subtract 3\sqrt{541} from -3.
x=\frac{-\sqrt{541}-1}{10}
Divide -3-3\sqrt{541} by 30.
x=\frac{\sqrt{541}-1}{10} x=\frac{-\sqrt{541}-1}{10}
The equation is now solved.
12x^{2}+3x+3x^{2}+9=90
Use the distributive property to multiply 3x by 1+x.
15x^{2}+3x+9=90
Combine 12x^{2} and 3x^{2} to get 15x^{2}.
15x^{2}+3x=90-9
Subtract 9 from both sides.
15x^{2}+3x=81
Subtract 9 from 90 to get 81.
\frac{15x^{2}+3x}{15}=\frac{81}{15}
Divide both sides by 15.
x^{2}+\frac{3}{15}x=\frac{81}{15}
Dividing by 15 undoes the multiplication by 15.
x^{2}+\frac{1}{5}x=\frac{81}{15}
Reduce the fraction \frac{3}{15} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{1}{5}x=\frac{27}{5}
Reduce the fraction \frac{81}{15} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{1}{5}x+\left(\frac{1}{10}\right)^{2}=\frac{27}{5}+\left(\frac{1}{10}\right)^{2}
Divide \frac{1}{5}, the coefficient of the x term, by 2 to get \frac{1}{10}. Then add the square of \frac{1}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{5}x+\frac{1}{100}=\frac{27}{5}+\frac{1}{100}
Square \frac{1}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{5}x+\frac{1}{100}=\frac{541}{100}
Add \frac{27}{5} to \frac{1}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{10}\right)^{2}=\frac{541}{100}
Factor x^{2}+\frac{1}{5}x+\frac{1}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{10}\right)^{2}}=\sqrt{\frac{541}{100}}
Take the square root of both sides of the equation.
x+\frac{1}{10}=\frac{\sqrt{541}}{10} x+\frac{1}{10}=-\frac{\sqrt{541}}{10}
Simplify.
x=\frac{\sqrt{541}-1}{10} x=\frac{-\sqrt{541}-1}{10}
Subtract \frac{1}{10} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}