Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

12x^{2}+34x+3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-34±\sqrt{34^{2}-4\times 12\times 3}}{2\times 12}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-34±\sqrt{1156-4\times 12\times 3}}{2\times 12}
Square 34.
x=\frac{-34±\sqrt{1156-48\times 3}}{2\times 12}
Multiply -4 times 12.
x=\frac{-34±\sqrt{1156-144}}{2\times 12}
Multiply -48 times 3.
x=\frac{-34±\sqrt{1012}}{2\times 12}
Add 1156 to -144.
x=\frac{-34±2\sqrt{253}}{2\times 12}
Take the square root of 1012.
x=\frac{-34±2\sqrt{253}}{24}
Multiply 2 times 12.
x=\frac{2\sqrt{253}-34}{24}
Now solve the equation x=\frac{-34±2\sqrt{253}}{24} when ± is plus. Add -34 to 2\sqrt{253}.
x=\frac{\sqrt{253}-17}{12}
Divide -34+2\sqrt{253} by 24.
x=\frac{-2\sqrt{253}-34}{24}
Now solve the equation x=\frac{-34±2\sqrt{253}}{24} when ± is minus. Subtract 2\sqrt{253} from -34.
x=\frac{-\sqrt{253}-17}{12}
Divide -34-2\sqrt{253} by 24.
12x^{2}+34x+3=12\left(x-\frac{\sqrt{253}-17}{12}\right)\left(x-\frac{-\sqrt{253}-17}{12}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-17+\sqrt{253}}{12} for x_{1} and \frac{-17-\sqrt{253}}{12} for x_{2}.