Factor
\left(3x+2\right)\left(4x+5\right)
Evaluate
\left(3x+2\right)\left(4x+5\right)
Graph
Share
Copied to clipboard
a+b=23 ab=12\times 10=120
Factor the expression by grouping. First, the expression needs to be rewritten as 12x^{2}+ax+bx+10. To find a and b, set up a system to be solved.
1,120 2,60 3,40 4,30 5,24 6,20 8,15 10,12
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 120.
1+120=121 2+60=62 3+40=43 4+30=34 5+24=29 6+20=26 8+15=23 10+12=22
Calculate the sum for each pair.
a=8 b=15
The solution is the pair that gives sum 23.
\left(12x^{2}+8x\right)+\left(15x+10\right)
Rewrite 12x^{2}+23x+10 as \left(12x^{2}+8x\right)+\left(15x+10\right).
4x\left(3x+2\right)+5\left(3x+2\right)
Factor out 4x in the first and 5 in the second group.
\left(3x+2\right)\left(4x+5\right)
Factor out common term 3x+2 by using distributive property.
12x^{2}+23x+10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-23±\sqrt{23^{2}-4\times 12\times 10}}{2\times 12}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-23±\sqrt{529-4\times 12\times 10}}{2\times 12}
Square 23.
x=\frac{-23±\sqrt{529-48\times 10}}{2\times 12}
Multiply -4 times 12.
x=\frac{-23±\sqrt{529-480}}{2\times 12}
Multiply -48 times 10.
x=\frac{-23±\sqrt{49}}{2\times 12}
Add 529 to -480.
x=\frac{-23±7}{2\times 12}
Take the square root of 49.
x=\frac{-23±7}{24}
Multiply 2 times 12.
x=-\frac{16}{24}
Now solve the equation x=\frac{-23±7}{24} when ± is plus. Add -23 to 7.
x=-\frac{2}{3}
Reduce the fraction \frac{-16}{24} to lowest terms by extracting and canceling out 8.
x=-\frac{30}{24}
Now solve the equation x=\frac{-23±7}{24} when ± is minus. Subtract 7 from -23.
x=-\frac{5}{4}
Reduce the fraction \frac{-30}{24} to lowest terms by extracting and canceling out 6.
12x^{2}+23x+10=12\left(x-\left(-\frac{2}{3}\right)\right)\left(x-\left(-\frac{5}{4}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{2}{3} for x_{1} and -\frac{5}{4} for x_{2}.
12x^{2}+23x+10=12\left(x+\frac{2}{3}\right)\left(x+\frac{5}{4}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
12x^{2}+23x+10=12\times \frac{3x+2}{3}\left(x+\frac{5}{4}\right)
Add \frac{2}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
12x^{2}+23x+10=12\times \frac{3x+2}{3}\times \frac{4x+5}{4}
Add \frac{5}{4} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
12x^{2}+23x+10=12\times \frac{\left(3x+2\right)\left(4x+5\right)}{3\times 4}
Multiply \frac{3x+2}{3} times \frac{4x+5}{4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
12x^{2}+23x+10=12\times \frac{\left(3x+2\right)\left(4x+5\right)}{12}
Multiply 3 times 4.
12x^{2}+23x+10=\left(3x+2\right)\left(4x+5\right)
Cancel out 12, the greatest common factor in 12 and 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}