Factor
\left(4x-1\right)\left(3x+5\right)
Evaluate
\left(4x-1\right)\left(3x+5\right)
Graph
Share
Copied to clipboard
a+b=17 ab=12\left(-5\right)=-60
Factor the expression by grouping. First, the expression needs to be rewritten as 12x^{2}+ax+bx-5. To find a and b, set up a system to be solved.
-1,60 -2,30 -3,20 -4,15 -5,12 -6,10
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -60.
-1+60=59 -2+30=28 -3+20=17 -4+15=11 -5+12=7 -6+10=4
Calculate the sum for each pair.
a=-3 b=20
The solution is the pair that gives sum 17.
\left(12x^{2}-3x\right)+\left(20x-5\right)
Rewrite 12x^{2}+17x-5 as \left(12x^{2}-3x\right)+\left(20x-5\right).
3x\left(4x-1\right)+5\left(4x-1\right)
Factor out 3x in the first and 5 in the second group.
\left(4x-1\right)\left(3x+5\right)
Factor out common term 4x-1 by using distributive property.
12x^{2}+17x-5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-17±\sqrt{17^{2}-4\times 12\left(-5\right)}}{2\times 12}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-17±\sqrt{289-4\times 12\left(-5\right)}}{2\times 12}
Square 17.
x=\frac{-17±\sqrt{289-48\left(-5\right)}}{2\times 12}
Multiply -4 times 12.
x=\frac{-17±\sqrt{289+240}}{2\times 12}
Multiply -48 times -5.
x=\frac{-17±\sqrt{529}}{2\times 12}
Add 289 to 240.
x=\frac{-17±23}{2\times 12}
Take the square root of 529.
x=\frac{-17±23}{24}
Multiply 2 times 12.
x=\frac{6}{24}
Now solve the equation x=\frac{-17±23}{24} when ± is plus. Add -17 to 23.
x=\frac{1}{4}
Reduce the fraction \frac{6}{24} to lowest terms by extracting and canceling out 6.
x=-\frac{40}{24}
Now solve the equation x=\frac{-17±23}{24} when ± is minus. Subtract 23 from -17.
x=-\frac{5}{3}
Reduce the fraction \frac{-40}{24} to lowest terms by extracting and canceling out 8.
12x^{2}+17x-5=12\left(x-\frac{1}{4}\right)\left(x-\left(-\frac{5}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{4} for x_{1} and -\frac{5}{3} for x_{2}.
12x^{2}+17x-5=12\left(x-\frac{1}{4}\right)\left(x+\frac{5}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
12x^{2}+17x-5=12\times \frac{4x-1}{4}\left(x+\frac{5}{3}\right)
Subtract \frac{1}{4} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
12x^{2}+17x-5=12\times \frac{4x-1}{4}\times \frac{3x+5}{3}
Add \frac{5}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
12x^{2}+17x-5=12\times \frac{\left(4x-1\right)\left(3x+5\right)}{4\times 3}
Multiply \frac{4x-1}{4} times \frac{3x+5}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
12x^{2}+17x-5=12\times \frac{\left(4x-1\right)\left(3x+5\right)}{12}
Multiply 4 times 3.
12x^{2}+17x-5=\left(4x-1\right)\left(3x+5\right)
Cancel out 12, the greatest common factor in 12 and 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}