Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(6x^{2}+7x-5\right)
Factor out 2.
a+b=7 ab=6\left(-5\right)=-30
Consider 6x^{2}+7x-5. Factor the expression by grouping. First, the expression needs to be rewritten as 6x^{2}+ax+bx-5. To find a and b, set up a system to be solved.
-1,30 -2,15 -3,10 -5,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -30.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
Calculate the sum for each pair.
a=-3 b=10
The solution is the pair that gives sum 7.
\left(6x^{2}-3x\right)+\left(10x-5\right)
Rewrite 6x^{2}+7x-5 as \left(6x^{2}-3x\right)+\left(10x-5\right).
3x\left(2x-1\right)+5\left(2x-1\right)
Factor out 3x in the first and 5 in the second group.
\left(2x-1\right)\left(3x+5\right)
Factor out common term 2x-1 by using distributive property.
2\left(2x-1\right)\left(3x+5\right)
Rewrite the complete factored expression.
12x^{2}+14x-10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-14±\sqrt{14^{2}-4\times 12\left(-10\right)}}{2\times 12}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-14±\sqrt{196-4\times 12\left(-10\right)}}{2\times 12}
Square 14.
x=\frac{-14±\sqrt{196-48\left(-10\right)}}{2\times 12}
Multiply -4 times 12.
x=\frac{-14±\sqrt{196+480}}{2\times 12}
Multiply -48 times -10.
x=\frac{-14±\sqrt{676}}{2\times 12}
Add 196 to 480.
x=\frac{-14±26}{2\times 12}
Take the square root of 676.
x=\frac{-14±26}{24}
Multiply 2 times 12.
x=\frac{12}{24}
Now solve the equation x=\frac{-14±26}{24} when ± is plus. Add -14 to 26.
x=\frac{1}{2}
Reduce the fraction \frac{12}{24} to lowest terms by extracting and canceling out 12.
x=-\frac{40}{24}
Now solve the equation x=\frac{-14±26}{24} when ± is minus. Subtract 26 from -14.
x=-\frac{5}{3}
Reduce the fraction \frac{-40}{24} to lowest terms by extracting and canceling out 8.
12x^{2}+14x-10=12\left(x-\frac{1}{2}\right)\left(x-\left(-\frac{5}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{2} for x_{1} and -\frac{5}{3} for x_{2}.
12x^{2}+14x-10=12\left(x-\frac{1}{2}\right)\left(x+\frac{5}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
12x^{2}+14x-10=12\times \frac{2x-1}{2}\left(x+\frac{5}{3}\right)
Subtract \frac{1}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
12x^{2}+14x-10=12\times \frac{2x-1}{2}\times \frac{3x+5}{3}
Add \frac{5}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
12x^{2}+14x-10=12\times \frac{\left(2x-1\right)\left(3x+5\right)}{2\times 3}
Multiply \frac{2x-1}{2} times \frac{3x+5}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
12x^{2}+14x-10=12\times \frac{\left(2x-1\right)\left(3x+5\right)}{6}
Multiply 2 times 3.
12x^{2}+14x-10=2\left(2x-1\right)\left(3x+5\right)
Cancel out 6, the greatest common factor in 12 and 6.