Skip to main content
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

12k^{2}-27k+12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-\left(-27\right)±\sqrt{\left(-27\right)^{2}-4\times 12\times 12}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, -27 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-\left(-27\right)±\sqrt{729-4\times 12\times 12}}{2\times 12}
Square -27.
k=\frac{-\left(-27\right)±\sqrt{729-48\times 12}}{2\times 12}
Multiply -4 times 12.
k=\frac{-\left(-27\right)±\sqrt{729-576}}{2\times 12}
Multiply -48 times 12.
k=\frac{-\left(-27\right)±\sqrt{153}}{2\times 12}
Add 729 to -576.
k=\frac{-\left(-27\right)±3\sqrt{17}}{2\times 12}
Take the square root of 153.
k=\frac{27±3\sqrt{17}}{2\times 12}
The opposite of -27 is 27.
k=\frac{27±3\sqrt{17}}{24}
Multiply 2 times 12.
k=\frac{3\sqrt{17}+27}{24}
Now solve the equation k=\frac{27±3\sqrt{17}}{24} when ± is plus. Add 27 to 3\sqrt{17}.
k=\frac{\sqrt{17}+9}{8}
Divide 27+3\sqrt{17} by 24.
k=\frac{27-3\sqrt{17}}{24}
Now solve the equation k=\frac{27±3\sqrt{17}}{24} when ± is minus. Subtract 3\sqrt{17} from 27.
k=\frac{9-\sqrt{17}}{8}
Divide 27-3\sqrt{17} by 24.
k=\frac{\sqrt{17}+9}{8} k=\frac{9-\sqrt{17}}{8}
The equation is now solved.
12k^{2}-27k+12=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
12k^{2}-27k+12-12=-12
Subtract 12 from both sides of the equation.
12k^{2}-27k=-12
Subtracting 12 from itself leaves 0.
\frac{12k^{2}-27k}{12}=-\frac{12}{12}
Divide both sides by 12.
k^{2}+\left(-\frac{27}{12}\right)k=-\frac{12}{12}
Dividing by 12 undoes the multiplication by 12.
k^{2}-\frac{9}{4}k=-\frac{12}{12}
Reduce the fraction \frac{-27}{12} to lowest terms by extracting and canceling out 3.
k^{2}-\frac{9}{4}k=-1
Divide -12 by 12.
k^{2}-\frac{9}{4}k+\left(-\frac{9}{8}\right)^{2}=-1+\left(-\frac{9}{8}\right)^{2}
Divide -\frac{9}{4}, the coefficient of the x term, by 2 to get -\frac{9}{8}. Then add the square of -\frac{9}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}-\frac{9}{4}k+\frac{81}{64}=-1+\frac{81}{64}
Square -\frac{9}{8} by squaring both the numerator and the denominator of the fraction.
k^{2}-\frac{9}{4}k+\frac{81}{64}=\frac{17}{64}
Add -1 to \frac{81}{64}.
\left(k-\frac{9}{8}\right)^{2}=\frac{17}{64}
Factor k^{2}-\frac{9}{4}k+\frac{81}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k-\frac{9}{8}\right)^{2}}=\sqrt{\frac{17}{64}}
Take the square root of both sides of the equation.
k-\frac{9}{8}=\frac{\sqrt{17}}{8} k-\frac{9}{8}=-\frac{\sqrt{17}}{8}
Simplify.
k=\frac{\sqrt{17}+9}{8} k=\frac{9-\sqrt{17}}{8}
Add \frac{9}{8} to both sides of the equation.