Evaluate
4\left(6\sqrt{6}-5\right)\approx 38.787753827
Factor
4 {(6 \sqrt{6} - 5)} = 38.787753827
Share
Copied to clipboard
\frac{12\times 2\sqrt{3}}{2}\sqrt{2}+\frac{24\sqrt{3}}{2}\sqrt{2}-\frac{20\sqrt{2}}{2}\sqrt{2}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{24\sqrt{3}}{2}\sqrt{2}+\frac{24\sqrt{3}}{2}\sqrt{2}-\frac{20\sqrt{2}}{2}\sqrt{2}
Multiply 12 and 2 to get 24.
12\sqrt{3}\sqrt{2}+\frac{24\sqrt{3}}{2}\sqrt{2}-\frac{20\sqrt{2}}{2}\sqrt{2}
Divide 24\sqrt{3} by 2 to get 12\sqrt{3}.
12\sqrt{6}+\frac{24\sqrt{3}}{2}\sqrt{2}-\frac{20\sqrt{2}}{2}\sqrt{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
12\sqrt{6}+12\sqrt{3}\sqrt{2}-\frac{20\sqrt{2}}{2}\sqrt{2}
Divide 24\sqrt{3} by 2 to get 12\sqrt{3}.
12\sqrt{6}+12\sqrt{6}-\frac{20\sqrt{2}}{2}\sqrt{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
24\sqrt{6}-\frac{20\sqrt{2}}{2}\sqrt{2}
Combine 12\sqrt{6} and 12\sqrt{6} to get 24\sqrt{6}.
24\sqrt{6}-10\sqrt{2}\sqrt{2}
Divide 20\sqrt{2} by 2 to get 10\sqrt{2}.
24\sqrt{6}-10\times 2
Multiply \sqrt{2} and \sqrt{2} to get 2.
24\sqrt{6}-20
Multiply 10 and 2 to get 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}