Evaluate (complex solution)
\frac{12\sqrt{11}i}{11}\approx 3.618136135i
Real Part (complex solution)
0
Evaluate
\text{Indeterminate}
Share
Copied to clipboard
12\sqrt{\frac{2}{-22}}
Subtract 25 from 3 to get -22.
12\sqrt{-\frac{1}{11}}
Reduce the fraction \frac{2}{-22} to lowest terms by extracting and canceling out 2.
12\times \frac{\sqrt{-1}}{\sqrt{11}}
Rewrite the square root of the division \sqrt{-\frac{1}{11}} as the division of square roots \frac{\sqrt{-1}}{\sqrt{11}}.
12\times \frac{i}{\sqrt{11}}
Calculate the square root of -1 and get i.
12\times \frac{i\sqrt{11}}{\left(\sqrt{11}\right)^{2}}
Rationalize the denominator of \frac{i}{\sqrt{11}} by multiplying numerator and denominator by \sqrt{11}.
12\times \frac{i\sqrt{11}}{11}
The square of \sqrt{11} is 11.
12\times \left(\frac{1}{11}i\right)\sqrt{11}
Divide i\sqrt{11} by 11 to get \frac{1}{11}i\sqrt{11}.
\frac{12}{11}i\sqrt{11}
Multiply 12 and \frac{1}{11}i to get \frac{12}{11}i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}