Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

12\times \frac{\sqrt{1}}{\sqrt{6}}-\frac{\sqrt{18}-4\sqrt{3}}{2}\sqrt{3}
Rewrite the square root of the division \sqrt{\frac{1}{6}} as the division of square roots \frac{\sqrt{1}}{\sqrt{6}}.
12\times \frac{1}{\sqrt{6}}-\frac{\sqrt{18}-4\sqrt{3}}{2}\sqrt{3}
Calculate the square root of 1 and get 1.
12\times \frac{\sqrt{6}}{\left(\sqrt{6}\right)^{2}}-\frac{\sqrt{18}-4\sqrt{3}}{2}\sqrt{3}
Rationalize the denominator of \frac{1}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
12\times \frac{\sqrt{6}}{6}-\frac{\sqrt{18}-4\sqrt{3}}{2}\sqrt{3}
The square of \sqrt{6} is 6.
2\sqrt{6}-\frac{\sqrt{18}-4\sqrt{3}}{2}\sqrt{3}
Cancel out 6, the greatest common factor in 12 and 6.
2\sqrt{6}-\frac{3\sqrt{2}-4\sqrt{3}}{2}\sqrt{3}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
2\sqrt{6}-\frac{\left(3\sqrt{2}-4\sqrt{3}\right)\sqrt{3}}{2}
Express \frac{3\sqrt{2}-4\sqrt{3}}{2}\sqrt{3} as a single fraction.
2\sqrt{6}-\frac{3\sqrt{2}\sqrt{3}-4\left(\sqrt{3}\right)^{2}}{2}
Use the distributive property to multiply 3\sqrt{2}-4\sqrt{3} by \sqrt{3}.
2\sqrt{6}-\frac{3\sqrt{6}-4\left(\sqrt{3}\right)^{2}}{2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
2\sqrt{6}-\frac{3\sqrt{6}-4\times 3}{2}
The square of \sqrt{3} is 3.
2\sqrt{6}-\frac{3\sqrt{6}-12}{2}
Multiply -4 and 3 to get -12.
\frac{2\times 2\sqrt{6}}{2}-\frac{3\sqrt{6}-12}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2\sqrt{6} times \frac{2}{2}.
\frac{2\times 2\sqrt{6}-\left(3\sqrt{6}-12\right)}{2}
Since \frac{2\times 2\sqrt{6}}{2} and \frac{3\sqrt{6}-12}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{4\sqrt{6}-3\sqrt{6}+12}{2}
Do the multiplications in 2\times 2\sqrt{6}-\left(3\sqrt{6}-12\right).
\frac{\sqrt{6}+12}{2}
Do the calculations in 4\sqrt{6}-3\sqrt{6}+12.